
Computer Science Module 1:
Reliability & Liability

Prepared by Dr. Daniel Rosiak, Prof. Shannon E. French, and Beth Trecasa – June 2021

1

Introduction

It is difficult to overstate how dependent we are today on computers and
computerized systems to facilitate so many of our daily activities. Such
systems now govern most of modern communication, transportation,
finance, retail, healthcare, military systems, and more.

When computerized systems work correctly, they can of course save us
time, money, and enable the accomplishment of many other activities.
But when they fail or something goes wrong, any of those benefits can
quickly be overturned by rather disruptive or impactful harms. Failures
of computer-integrated systems can ramify throughout many areas of
society, resulting in lost time, lost money, social injustice, and even injury
or loss of life.

2

Introduction

3

Computers and code nearly always form part of larger
systems – like financial systems, health-care systems,
transportation systems, etc. – and fundamentally it is
the reliability of the entire system that is most important.

A system that is designed well is one that can tolerate
the malfunction of any single component without failing
or causing harm.

Introduction

4

These two-paired modules are designed to
familiarize you with:

● some of the ways in which computerized
systems have proven to be unreliable, what
we can do to make them more reliable,

● what the broader ethical stakes are, and
● general practices we can implement to

encourage greater awareness and
anticipation of the risks.

Specific Objectives
The main purpose of this two-part Reliability & Liability module is to invite aspiring computer
scientists and others involved in the construction, design, upkeep, and testing of large systems or
components thereof to increase their awareness of some of the broader ethical risks associated
with the variety of ways things can go wrong.

Module 1
● A number of carefully-selected examples to illustrate three main errors types
● Important lessons drawn from each of those examples
● An assignment for students

Module 2
● General tools to better identify and mitigate ethical risks
● An assignment for students
● Further readings and resources

5

Three Error Types
We can identify three main sorts of errors, each of which will be illustrated in turn via
concrete examples and discussion of those examples:

1. Errors in data-entry or data-retrieval

2. Errors, bugs, or code features that enable system malfunction

3. Errors, bugs, or code features that enable system failure

6

1. Errors in data-entry or data-retrieval
Example 1: National Crime Information Center (NCIC)
Example 2: Amazon AWS Crash
Example 3: Hawaii Missile Alert

7

1. Errors of data entry or retrieval
First, let us look at examples where the user or the
computer-human interface turns out to be the weak link
in the system, leading to some problem. We can call
these issues system errors due to data entry or data
retrieval.

This is just what it sounds like. Sometimes, computerized
systems fail or behave in unexpected ways as a result of
wrong data having been entered into them or because
people incorrectly interpret the data they retrieve.

8

1. Errors of data entry or retrieval
While it is tempting to want to focus on a particular mistake made by an individual person entering
or retrieving the data, we should keep in mind that any system

● like the voting system failing after incorrect records inputted into the computer database
disqualified thousands of voters, or

● like the criminal justice system failing when a person is arrested after being confused with
another person in a database

is larger than the individual person or persons who make the error.

Therefore, it is often more useful to focus on how such local errors are possible in the first place,
how they are allowed to propagate through a system to become global or larger-impact problems,
and how to anticipate and mitigate the risks associated with this.

å

9

Example 1: National Crime Information Center (NCIC)

The FBI National Crime Information Center (NCIC) is a
computerized database of criminal justice information
made available to federal, state, and local law
enforcement and other criminal justice agencies for
ready access by the criminal justice agency making an
inquiry. This information is designed to assist authorized
agencies law enforcement objectives, such as
apprehending fugitives, locating missing persons,
looking up criminal records, locating and returning stolen
property, etc.

10

Example 1: National Crime Information Center (NCIC)

Tens of thousands of law enforcement agencies have
access to these data files, and the NCIC processes more
than 13 million requests for information each day.

For example, a police officer may initiate an NCIC search
during a traffic stop to find out if the vehicle is stolen or
there is a warrant out for the driver, and the system
supplies records and answers to such queries.

11

Example 1: National Crime Information Center (NCIC)
A number of critics of the NCIC have pointed out ways in which the NCIC has led to a variety of
injustices and privacy violations of innocent people, such as:

● Erroneous records entered in the database can lead law enforcement agencies to arrest
innocent persons

● Typographical errors made by law enforcement checking the database have led to false
arrests¹

● Innocent people with the same name as that of individuals listed in the arrest warrants
database have been mistakenly arrested²

● Corrupt law enforcement employees with access to NCIC have sold information, altered,
deleted, and otherwise misused records³

12

1. https://www.llrmi.com/articles/legal_update/2015_maresca_v_fuentes/
2. Source: Rodney Hoffman. “NCIC Information Leads to Repeat False Arrest Suit.” Risks Digest8(71), May 17, 1989.
3. https://www.cbsnews.com/news/police-sometimes-misuse-confidential-work-databases-for-personal-gain-ap/

Example 1: National Crime Information Center (NCIC)
For concrete instances of the many stories of police making false arrests based on information
they retrieved from the NCIC, here are two:

1. Roberto Perales Hernandez was jailed twice in three years as a suspect in a Chicago
residential burglary, even though he had never been to Chicago in his life. The authorities
had confused him with another Roberto Hernandez due to a single entry in the NCIC. The
two Roberto Hernandezes were the same height, about the same weight, had brown hair,
brown eyes, tattoos on their left arms, shared the same birthday, and had Social Security
numbers that differed by just one digit.

2. Terry Dean Rogan was arrested five times – and twice at gunpoint! – for crimes he didn’t
commit. The NCIC had erroneously listed him as wanted for murder and robbery, even
after the actual suspect using his name had been identified.

13

● Martin D. Yant's Presumed Guilty: When Innocent People Are Wrongly Convicted

Example 2: Amazon AWS Crash:
“Your internet will return in 2-5 business days!”
On Feb. 28, 2017, the Amazon AWS service crashed,
causing many websites hosted by the software to become
unresponsive. Amazon conducted an internal investigation
and concluded that during a simple debugging, a single
service member had executed a single command intended
to remove a negligible amount of servers to help speed up
the process.

While Amazon was able to restore service fairly quickly and
no data was permanently lost, it was reported that S&P 500
companies lost an estimated $150 million, and U.S.
financial services companies lost even more during the
outage. All this economic carnage from entering a simple
command incorrectly!

14

● Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region:
https://aws.amazon.com/message/41926/

● https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506

Example 3: Hawaii Missile Alert

Hawaii is the only state with a pre-programmed
Wireless Emergency Alert that can be sent directly
to wireless devices if a ballistic missile is heading
toward the state.

This is partly because if a missile were ever fired
from North Korea, the missile would take
approximately just 20 minutes to reach Hawaii.

15

Example 3: Hawaii Missile Alert
In 2018, the alert had been inadvertently sent out by
an employee of the Emergency Management
Agency during a shift change.

During the shift change, a supervisor initiated an
unscheduled drill in which he contacted emergency
management workers in the guise of an officer from
US Pacific Command.

The supervisor deviated from the script, at one point
saying "This is not a drill," although he did state both
before and after the message, "Exercise, exercise,
exercise," to indicate that it was in fact a test.

16

Example 3: Hawaii Missile Alert

Upon hearing the supervisor's statement, the
employee assuming their post believed there was an
actual emergency, and proceeded to click the alert
button from a dropdown of options, which would send
out an actual notification on Hawaii's emergency alert
interface.

The employee then clicked through a second screen,
which had been intended as a safeguard, to confirm.

17

Hawaii Emergency Management Agency officials were
subsequently asked for a screenshot of the interface the
employee was looking at when the false alert was sent out.
They gave a “facsimile” of the UI (not the actual screen, for
security purposes), the archaic design, logic and layout of
which was subsequently widely criticized.

“DRILL-PACOM (DEMO) STATE ONLY”

was the link the employee should have clicked on for the test.

Listed further below is the link “PACOM (CDW) — STATE
ONLY,” the link that he did in fact click, leading to the
incoming ballistic missile alert sent to residents and visitors
statewide.

Example 3: Hawaii Missile Alert

18

Lessons Learned: Errors of data entry or retrieval

From the perspective of those responsible for well-engineered systems and the
code-elements of such systems, it may appear (and may be the case) that
certain aspects of such “user errors” are inevitable.

The proper response to these things may indeed largely depend on the proper
training of human users. But as ethically responsible coders, there are still
general principles we can adopt that will allow us to do all we can to avert such
errors or at least minimize the harmful effects of such unfortunate cases.

19

● Norman, Don. The design of everyday things. ISBN 978-0-465-06710-7.

Lessons Learned: Errors of data entry or retrieval
Adopting a modified version of an insight from Don Norman*:

● Don't think of the user as making errors; think of the actions as approximations of what the
system intends.

● Anticipate and build into the system tolerances and safeguards to the potential “errors” in
such approximations.

● Remember that a well-engineered system does not fail when a single component fails. If
there are ways a single human user can cause large-scale deviations from intended use,
the effects of such local deviations on the broader system should be anticipated,
minimized, and safeguarded against as much as possible.

20

● Norman, Don. The design of everyday things. ISBN 978-0-465-06710-7.

Back to the Errors: Two Errors of Another Sort
Errors of data-entry or retrieval can be harmful. However, it remains the case that their
analysis is typically comparatively uncomplicated, and the measures we can take are often
straightforward.

Even supposing data entered into, or retrieved from, a computer system are correct, the
system may still produce wrong or undesirable results, and may even collapse entirely if the
errors are serious enough. In such cases, we can identify the other two main sorts of errors:

2. Errors, bugs, or code features enabling system malfunction

3. Errors, bugs, or code features enabling system failure

The ethical risks and liabilities of these two sorts of errors are generally harder to mitigate
and/or involve the greatest potential for harm.

21

2. Errors/Bugs enabling system malfunction
Example 1: Speel chek
Example 2: High-Risk Inmates Mistakenly Released
Example 3: Rent Miscalculation

22

Example 1: Speel chek
A University of Pittsburgh study revealed that, for most students, computer spelling and
grammar error checkers actually increased the number of errors they made.

23

● D. F. Galletta, A. Durcikova, A. Everard, and B. Jones. “Does Spell-Checking Software Need a Warning Label?”
Communications of the ACM, pp. 82–86, July

Example 2: High-Risk Inmates Mistakenly Released
In 2010, in the course of implementing a program
meant to lessen prison overcrowding, more than 400
California prison inmates classified as “high risk of
violence” were mistakenly released, owing to
“computer errors.”

An additional 1,000 prisoners deemed to present a
high risk of committing other crimes were also let
out, stemming from those same errors.

None of the prisoners could be returned to prison or
retroactively put on supervised parole, as they had
already been granted “non-revocable parole.”

24

● “Computer errors allow violent California prisoners to be released unsupervised” Los Angeles Times, May 26,
2011.Los Angeles Times, May 26, 2011.

Example 2: High-Risk Inmates Mistakenly Released

Under the law that created non-revocable parole, inmates
are excluded if they are gang members, have committed
sex crimes or violent felonies, or have been determined to
pose a high risk to reoffend based on an assessment of
their records behind bars.

The computer program that prison officials used to make
that assessment did not (and could not) access an
inmate’s disciplinary history. The program also relied on a
state-level Department of Justice system that recorded
arrests but was missing conviction information for nearly
half of the state’s millions of arrest records.

25

● “Computer errors allow violent California prisoners to be released unsupervised” Los Angeles Times, May 26,
2011.Los Angeles Times, May 26, 2011.

Example 3: Rent Miscalculation
Between September 2008 and May 2009,
hundreds of low-income families living in public
housing in New York City were charged too much
rent because of a “computer error,” specifically an
error in the program that calculated monthly bills.

For those nine months, the New York City
Housing Authority ignored the complaints made
by the renters that they were being overcharged.

Instead, it took to court and threatened with
eviction many of those who failed to make the
higher payments.

26

● Manny Fernandez. “Computer Error Caused Rent Troubles for Public Housing Tenants.” New York Times, August 5,
2009.

Lessons Learned: Errors/Bugs enabling system malfunction

Lesson 1 Avoid “automation bias” (Spell Check and Rent Miscalculation)

● Automation bias is a term often used to describe our documented habit of
favoring or deferring to suggestions coming from automated decision-making
systems and programs, to the point of ignoring contradictory information from
sources not deploying automation, even when that information is correct.

27

Lessons Learned: Errors/Bugs enabling system malfunction

Lesson 2 Ensure that the program has all the relevant data in the first place, not just that
it operates correctly with any data it is already assumed to have (Inmates Released)

● Sometimes failures of a program to query certain data can, in the broader context of
the way the program is used, lead to flaws in the implementation of the program in its
native context of use.

● Be sure to not just check the program in terms of how it operates with the data it has at
the code-level, but also to consider whether the program itself is calling on all the
relevant data it needs in order to be implemented correctly or appropriately in the
broader context of use.

28

3. Errors/Bugs enabling system failure

Example 1: Boeing 737 Max Crash
Example 2: Tesla 2016 Crash
Example 3: Patriot Missile System
Example 4: Ariane 5
Example 5: Robot Mission to Mars
Example 6: Flash Crashes

29

Example 1: Boeing 737 Max Crash

While the National Transportation Safety Committee’s
(NTSC) final report lists nine contributing factors, the
most serious seems to have been those pertaining to the
“angle of attack” sensor and assumptions that were
made about flight crew response to malfunctions.

Even though these assumptions were consistent with
current industry guidelines, they turned out to be
incorrect.

30

● The Boeing 737 MAX: Lessons for Engineering Ethics; NTSC Final Report; What Caused the 737 Crash?:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351545/

On October 29, 2018, a Boeing 737 Max airplane flying
from Jakarta crashed into the Java Sea just 13 minutes
after takeoff, taking the lives of all 189 passengers and
crew. Subsequent investigations revealed flight control
problems, failures of an “angle of attack” sensor, and
other failures tied to a design flaw in a core system of
the Max series. Less than 6 months later, in 2019,
another 737 Max crashed only 6 minutes after takeoff,
taking the lives of all 157 people aboard.

Example 1: Boeing 737 Max Crash

As a flight expert explained:

“In the two recent Boeing 737 Max crashes, it appears that the sensor sent
wrong information to the flight control system indicating the angle of attack is
too large and approaching stall, so the system steered the aircraft by pitching
the nose down to correct the angle of attack. The pilots realized this was a
wrong command and they tried to override the system, but it appears they
could not figure out how to override it. So the planes went into a dive and
eventually crashed...We are not at the phase where pilots should be left out of
the cockpit. We think pilots still should fly the airplanes. Those two accidents
are not due to poor design, it’s more because of a judgment call in
programming, a small error that made such a big impact.”

31

● The Boeing 737 MAX: Lessons for Engineering Ethics; NTSC Final Report; What Caused the 737 Crash?:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351545/

Example 2: Tesla 2016 Crash

After 2014, Tesla started equipping its cars with
“Autopilot” software that enabled the car to control its
speed and steer, including an Automatic Emergency
Braking (AEB) system.

They claimed the driver should use this autopilot
“when the conditions are clear...with the expectation
that the human driver will respond appropriately to a
request to intervene...The driver is still responsible for,
and ultimately in control of, the car” (Tesla).

On May 7, 2016, Joshua Brown was killed when his Tesla
crashed into the semi-trailer portion of a truck on a
highway. The accident occurred as Brown’s Model S, with
Autopilot engaged, was traveling east on a divided
highway. The truck had been traveling in the opposite
direction on the highway, and turned left in front of the
Tesla. The semi-trailer portion was elevated enough off
the ground that the car continued under it, shearing off its
roof, after which the Tesla was sent veering off the road.

32

● Quinn's Ethics for the Information Age, Chapter 8, for more extensive discussion of this incident.
● https://electrek.co/2016/07/02/tesla-autopilot-mobileye-automatic-emergency-braking/

Example 2: Tesla 2016 Crash

After Brown’s crash in 2016, the subsequent NTSB
investigation determined that Autopilot was
engaged for 37 minutes before the collision, during
which time Brown’s hands were on the steering
wheel for only 25 seconds.

He received seven visual and audible warnings to
put his hands back on the steering wheel.

As for the AEB system, when the truck turned in
front of the Tesla and Brown failed to respond, why
didn’t it engage?

33

● Quinn's Ethics for the Information Age, Chapter 8, for more extensive discussion of this incident.
● https://electrek.co/2016/07/02/tesla-autopilot-mobileye-automatic-emergency-braking/

Example 2: Tesla 2016 Crash

Mobileye, which supplied the vision system for
Autopilot, provided the explanation that the system
was designed to avoid rear-end collisions, but not to
avoid vehicles crossing laterally.

After Mobileye issued that statement, Tesla quickly
released a “clarification” in which it noted its autopilot
system relies on dozens of technologies to determine
how it should respond to a particular situation.

According to Tesla, automatic braking did not engage
because the trailer was white, making it difficult to see,
and the trailer was tall, making the radar confuse it for
an overhead sign.

34

● Quinn's Ethics for the Information Age, Chapter 8, for more extensive discussion of this incident.
● https://electrek.co/2016/07/02/tesla-autopilot-mobileye-automatic-emergency-braking/

Lessons Learned: Errors/Bugs enabling system failure
Lesson 1 In the case of automated components of a system, even seemingly reasonable assumptions about the expected
behavior of human operators – in the face of both malfunctions and ordinary operation – should be carefully scrutinized.

Lesson 2 Smooth transition passing control between automated control and human operation should be carefully
considered, both at the level of the code and system design.

● If operators (pilots, drivers) do not place enough trust in an automated system, they may inject risk by intervening in
system operation; but conversely, if pilots trust an automated system too much, they may either suffer from automation
bias and fail to intervene when necessary, or lack sufficient time to act once they identify a problem.

● While clear transitions back to human control or manual override should be built into systems, experts have noted how in
many emergency situations there simply may not be enough time for a human operator to retake control before an
accident occurs. Thus, in general, automated control systems should be designed in such a way that while humans
always can take over in an emergency situation, humans are never needed to takeover in any of the emergency
situations.

Lesson 3 Sensor misinformation (as with the angle attack) or edge cases involving misidentification (as with the Tesla
sensor mistaking the trailer portion of the truck for a sign) need to be considered in advance, and code-level mechanisms put in
place to minimize the potential harm of such things in those rare circumstances where they do occur.

35

Example 3: Patriot missile system
The Patriot missile system was originally designed by the
US Army to shoot down airplanes. In the Gulf War of 1991,
the Army put the Patriot missile system to work defending
against Scud missiles launched at Israel and Saudi Arabia.

At the end of the Gulf War, the Army claimed the Patriot
missile defense system had been 95 percent effective at
destroying incoming Scud missiles, but later analyses
showed that perhaps as little as 9 percent of the Scuds were
actually destroyed by Patriot missiles.

As it turns out, many Scuds simply fell apart as they
approached their targets -- their destruction had nothing at
all to do with the Patriot missiles launched at them.

36

Example 3: Patriot missile system
The most significant failure of the Patriot missile system
occurred during the night of February 25, 1991, when a
Scud missile fired from Iraq hit a US Army barracks,
killing 28 soldiers.

The Patriot missile battery defending the area never
even fired at the incoming Scud. A report traced the
failure of the Patriot system to a surprisingly trivial
software error.

The Patriot system failed to track and intercept the
incoming Scud due to a truncation error involving a loss
of precision in converting integers to a floating point
number representation!

37

Example 3: Patriot missile system
The Patriot missile battery did detect the incoming Scud missile as it first came over the
horizon. But in order to prevent the system from responding to false alarms, the
computer had been programmed to check multiple times for the missile. It would do this
by predicting the flight path of the incoming missile, directing the radar to focus on that
area, and scanning a segment of that area, called a range gate, for the target. In this
particular case, the program scanned the wrong range gate and thus failed to detect
the missile.

Why was the wrong range gate scanned by the program? The prediction of where
the Scud will next appear is a function of the Scud’s velocity, of course determined by
its change in position with respect to time, where time is updated in the Patriot’s internal
system clock in 100 ms intervals. Velocity was represented as a 24-bit floating point
variable, and time as represented as a 24-bit integer, but both must be represented as
24-bit floating point numbers in order to predict where the Scud will next appear.

The conversion from integer time to real time results in a loss of precision that
increases as the internal clock time increases. The error introduced by the conversion
results in an error in the range gate computation,proportional to the target’s velocity and
the length of time that the system is running. The longer the system ran, the more these
truncation errors added up – leading to disaster.

38

● Figure from Data representation: case study:
http://8051-microcontrollers.blogspot.com/2015/01/data-representation-case-study-patriot.html#.YNoLzhNKjHF

Example 4: Ariane 5

39

The Ariane 5 was a satellite launch vehicle designed
by the French space agency.

During its maiden flight in 1996, about 40 seconds
after takeoff, a software error caused the active and
backup computers to shut down, resulting in the total
loss of altitude control. The vehicle self-destructed.

While no one was injured, the uninsured rocket carried
satellites worth $500 million, making it the costliest
error (in dollar terms) in history at the time.

Example 4: Ariane 5
The software error that ultimately led to the crash was traced to a piece of code
that converts a 64-bit floating-point value into a 16-bit signed integer. The input
value that was to be converted ended up exceeding the range of what could be
represented as a 16-bit signed integer. Moreover, there was no explicit
exception handler to catch the overflow exception, so the uncaught exception
crashed the entire software and the onboard computers. Arguably, this
unhandled overflow exception was a main reason for the disaster.

As it turned out, this piece of code had been part of the 10-year-old software for
the Ariane 4. Furthermore, the code that might have caught and handled the
conversion errors had been disabled on the Ariane 4 – since, for that system,
performance constraints made such overflow errors irrelevant – yet, as it turned
out, those same performance constraints did not apply to the Ariane 5. The
velocity reached by the Ariane 5 was much greater, and too high to be
represented as a 16-bit integer, yet exception-handling had been suppressed.

40

Example 4: Ariane 5
The Ada language (which was used for the Ariane’s software) generates an
exception if a floating-point number is too large to be converted to an integer; but
the programmers had decided that this situation would never happen and thus
didn’t provide an exception handler.

The original programmer of the subprogram for converting a floating point
number to a signed 16 bit number likely realized that the value of the floating
point number to be converted must lie within a restricted range – but such
restrictions on input values (preconditions for subprograms) were neither
systematically derived nor well-documented.

A decision had also been made by the Ariane 5 team not to provide an overflow
exception handler because the processor was already heavily loaded.

41

Example 4: Ariane 5
The code was designed such that, in the event of any exception, the failure
should lead the main processor to be shut down, and to switch to a backup.
Since there was no exception handler in the code, when the overflow happened,
the main software component failed and the system attempted to revert to the
backup system. However, that backup system (based on the Ariane 4) was
identical in hardware and software to the active one, and so it could not be
activated because it had failed for exactly the same reason!

An irony was that the overflow conversion error that caused the issue occurred in
a routine that had been re-used from the Ariane 4 vehicle, but was not even an
appropriate computation to require for the Ariane 5. Moreover, as the
computation that failed was not supposed to be required for Ariane 5, there was
no associated requirement, so no tests were made of that portion of the
software. The main code component in question had been validated for the
Ariane 4, so no further testing with hardware and software, or test simulations
with real data from the actual Ariane 5 trajectory, were ever performed.

42

● For more, see "Design by Contract: The Lessons of Ariane,"
https://homepages.cwi.nl/~storm/teaching/reader/JezequelMeyer97.pdf

Lessons Learned: Errors/Bugs enabling system failure
Lesson 1 Apparently small errors can accumulate and have non-small consequences (Patriot Missile)

● Take seriously the treatment of types, errors in final computations that can occur by, for instance, treating a
floating point value like an integer, etc.

Lesson 2 It can be dangerous to reuse code, especially without a precise specification mechanism; any software
element with a fundamental constraint should state this explicitly (and provide thorough documentation) -- without
this, it is safer to redo rather than reuse (Ariane 5)

● As the Ariane 5 example demonstrates, assumptions that were valid when the code was originally written may
no longer be true when the code is reused. Since some of these assumptions or constraints may not be stated
explicitly or well-documented, the new team may not have the opportunity to check if these assumptions still
hold true in the new system.

● In programming courses, one often learns to reuse code. The Ariane 5 incident provides a cautionary tale for
what can go wrong if we aggressively reuse code in a thoughtless manner or do not provide proper
documentation. Note that reusing code does not always increase the quality of the final product.

43

Example 5: Robot Mission to Mars
NASA built the Mars Climate Orbiter to facilitate communications between
Earth and automated probes on the surface of Mars, including the Mars
Polar Lander. In 1999, the spacecraft was lost because of a
miscommunication between two support teams on Earth.

The issue could be traced back to the fact that the flight operations team
based in Colorado designed its software to use English units, so that its
program output thrust in terms of foot-pounds units. The navigation team
at the Jet Propulsion Laboratory in California, on the other hand, designed
its software to use metric units, so its program expected thrust to be input
in terms of newtons. One foot-pound equals 4.45 newtons.

On September 23, 1999, the Climate Orbiter neared Mars, and when it
was time for the spacecraft to fire its engine to enter orbit, the Colorado
team supplied thrust information to the California team, which then relayed
it to the spacecraft. But there was a units mismatch, so the navigation
team specified 4.45 times too much thrust, and the Orbiter flew too close
to the surface of Mars and burned up in its atmosphere!

44

Lessons Learned: Systems can fail on account
of miscommunications among people.

● In this case, the output of one program was
incompatible with the input to the other
program, and a poorly specified interface,
together with miscommunication, allowed this
error to remain undetected until after the
spacecraft was destroyed.

● This example is discussed in Quinn's Ethics for the Information Age, which includes a more extensive discussion.

Example 6: Flash Crashes
● A flash crash is when there is a sudden

and extreme plunge in prices of a stock,
commodity, bond, currency, some other
security, followed by a quick recovery.
These are not generally crashes that occur
due to any perceived change in the
fundamental value of the stock.

● While there is some debate about the
ultimate cause of flash crashes – which
continue to be semi-regular occurrences in
financial markets – it is evident that
algorithmic trading and the heavy use of
automated trading computer programs and
bots are one of the main causes.

45

2010 Flash Crash
The 2010 Flash Crash is the market crash that occurred on May 6, 2010.
During the crash, leading US stock indices, including the Dow Jones, S&P
500, and Nasdaq Composite Index, tumbled and partially rebounded in less
than an hour. The day was distinguished by extremely high volatility in
trading. While the market indices managed to partially rebound in the same
day, in the 15 minutes this whole debacle took to unfold the flash crash
erased almost $1 trillion in market value!

After the Flash Crash of 2010, there were congressional hearings and other
investigations.

Since then, there have been at least 5 other very notable flash crashes,
where the impact is felt market-wide. But to this day, across all markets,
there are by some estimates at least 10 mini flash crashes per day!

46

2010 Flash Crash

47

The massive decline in market prices was
triggered by

● A single selling order of a large amount of
S&P contracts,

● subsequent aggressive selling orders and
automated strategies executed by
high-frequency algorithms,

● small but not negligible delays suffered by
the exchange computers in relaying accurate
price data on to brokers and other trading
platforms, together with

● some complex feedback loops involving
trading bots and leading to accelerated
downward price spiral.

Breaking Down the Crash: Automatic Sell Orders
After the plunge in 2010, several reports indicated that while
the event may have been initially triggered by an unusually
large sell order for a particular big stock, this incited massive
algorithmic trading automated orders to dump the stock via
their “stop-loss” mechanism, which created a cascade of
downward pressure.

A stop-loss order is essentially an automatic conditional
trade order given to trigger a sale when a certain price level
is reached to the downside (provided sufficient volume is
present), and is typically used by traders to “cut losses.”
Such orders are set to trigger once the price of the stock in
question falls below the specified stop price threshold. Such
orders are fundamentally designed to limit an investor’s loss
on a position.

48

if ((price < stopLossThreshold) && (volume >
minViableVol)):

MarketSellOrder;
else;

Breaking Down the Crash:
Automatic Sell Orders
When a sale order for a stop-loss order is made, it can
execute as either a market order or a limit order (though
typically, it is as a market order).

A market order executes immediately, at whatever
price the market is trading at that moment.

A limit order is a designated order “put on the order
books,” that gets filled only if the further specified limit
price is reached.

The risk associated with stop-loss orders can be
particularly extreme if prices plunge as they do during a
flash crash.

49

● Image from Forex: Stop-Loss: https://www.babypips.com/learn/forex/stop-loss-whats-that

● A risk with a stop-loss order (executed as a
market order) is that it triggers after a certain
threshold is reached, but by the time the market
order is executed, actually selling the stock, the
price has slipped a great deal lower than that
threshold, incurring bigger losses.

● No matter how quickly the price rebounds, once
the stop-loss is triggered, it is triggered, and
you sell at a loss (possibly extreme, if the order
is executed at market price and the price
moved a lot from the trigger level).

Breaking Down the Crash: High-Frequency Traders
● High-frequency traders (HFTs), using more

sophisticated algorithmic trading strategies, are another
factor in flash crashes. HFTs make use of algorithms to
carry out large transactions, executed at high speeds.

● Such HFTs have also used algorithms to carry out
market manipulation activities like ‘spoofing’, which is
basically where algorithms place fake but large sell
orders on the order books to intimidate or influence
market participants, and then remove the order the
moment before it gets filled. The purpose of spoofing
can be to create the illusion of volume, artificially trick
market participants into thinking that mass selling (or
buying) is happening when it actually is not (since the
orders are not meant to be filled), increase noise, clog
exchanges, and generally outwit or intimidate
competitors.

50

“Ah, things are
getting volatile!
Let me place a
“crazy” buy stub
quote order all
the way down
here. If it fills,
lucky me!”

Breaking Down the Crash: High-Frequency Traders

● There are further algorithmically-executed
strategies, such as placing ‘stub quotes’ conditional
on certain other factors (such as high volatility): a
stub quote (also known as a placeholder quote) is
an order to buy or sell shares that is deliberately set
far lower or higher than the prevailing market price
and are not generally expected to execute.

● In extreme situations – with extreme volatility (price
swings) – stub quotes may actually get executed,
and this will exacerbate any market volatility already
present.

51

“Ah, things are
getting volatile!
Let me place a
“crazy” buy stub
quote order all
the way down
here. If it fills,
lucky me!”

Important Assumptions Made by the Bots
1. Traditionally, one would assume that volume (the number of shares of the stock that change hands during

a specified time period) is a good indicator of liquidity (actual money present on that market), i.e., one
assumes

Volume ≈ liquidity

Especially before algorithmic trading entered the picture, this was a sensible assumption: if there’s an
increase in volume, it’s because actual money is trading hands between people making a trade; if there is
little to no volume, it shows that liquidity has dried up. But as algorithms and high-frequency traders
became increasingly active in markets throughout the early 2000s, computer-driven trading programs
would pass stocks back and forth in “hot potato” fashion, causing big increases in trading volume, without
this often reflecting any actual increase in demand and the associated liquidity injections that would
normally come with this.

2. Another normally reasonable assumption made by traders and their algorithms is that

the quoted price of an asset = its actual price

In other words, it is assumed that price “oracles” feeding their algorithms the price don’t lie.

52

Observe Simplicity of Each Individual
Algorithm/Assumption

● Each of the described algorithms or trading programs is remarkably simple, on its
own.

● Looking closely at any one of them individually – say the stub quote order – there
may be no reason to suppose that global system meltdown could arise from this.

● Moreover, the assumptions made in certain of the conditionals appear entirely
sensible.

● However, composed together, and when (under unexpected circumstances) certain
assumptions become erroneous, extreme and unanticipated effects can emerge on
a large scale.

53

When Sensible Assumptions Go Wrong

● The assumption that trading volume is a good measure of liquidity turned out to
be especially erroneous, which had disastrous effects as the algorithms were
composed together and acted in concert.

The increasingly aggressive selling and buying of large volumes of securities by the
algorithmic trading bots resulted in enormous price volatility and high volume –
which, mistaken for indicating high liquidity, led many algorithms to execute market
orders, under the impression that there was liquidity/demand there to fill their orders.
There was not, and so their orders would fill at prices that deviated from their
stop-loss thresholds or expected price, often by ridiculous amounts.

 54

When Sensible Assumptions Go Wrong

● Furthermore, an analysis of trading on the exchanges during the moments immediately
prior to the flash crash revealed technical glitches in the reporting of prices on the
stock exchange that further contributed to the drying up of liquidity. According to this
analysis, technical problems at the New York Stock Exchange (NYSE) led to delays as
long as five minutes in NYSE quotes being reported on the system that reports the
current quoted prices.

● At the same time, there were also errors in the prices of some stocks. Uncertain about
prices, many market participants attempted to drop out of the market by posting stub
quotes. Many high-frequency trading algorithms attempted to exit the market with their
fast market orders, which began an “arms race” to the bottom – to the point that, in a
flash, many orders got executed at stub quote levels, leading to ridiculously low prices
in many stocks.

 55

Ultimate Cause of the 2010 Crash?

A peculiar combination of the algorithms compounded...

1. Initial large (“fat finger”) sell order →
2. Many stop thresholds of automated stop-loss sell orders get triggered →
3. Increased trading volume →
4. Since the automated trading programs operated under assumption that

trading volume is a good measure of market liquidity (and liquidity generally
means one can exit safely), this led to increased sell pressure, coupled
with scarce liquidity triggering extreme price reduction

 56

Ultimate Cause of the 2010 Crash?

 57

...and further exacerbating factors…

1. Since algorithmic trading bots were also spoofing the order books
& there were technical glitches in “price oracles” →

2. The market was actually illiquid, contrary to what volume
indicated →

3. As many high-frequency trading algorithms attempted to exit the
market with market orders as fast as possible (which were
executed at the stub quote prices) →

4. This had more of a domino effect

Lessons Learned from Example 6
Individually, the programs that contributed to the flash crash were not
particularly intelligent or sophisticated, e.g.,

“sell if a certain price is reached and liquidity (= volume) is above some level.”

Lesson 1 Emergent Failures: Interactions between individually simple
components can produce unexpected effects when composed.

● Systemic risk can build up as new simple elements are
introduced to a system, once a certain threshold of composability
is met, extreme conditions arise, or under the presence of certain
erroneous assumptions.

● In such cases, the risks may not even be obvious until after
something goes wrong. In practice, such failures often pair with
cascade effects – multiple failures that in isolation may have
been minor or easily contained, but in concert produced
aggregate disaster or consequences of great magnitude.

 58

Don’t underestimate the power of
composability and how many different
protocols, code-components, and systems
can interface and their vulnerabilities
compound to create emergent failures.

Lessons Learned: Flash Crash

Lesson 2 The Perils of Consistency: Smart professionals might give instructions to a program based
on an ordinarily (or previously) sensible and sound assumption – like, the assumption that trading volume
is a reliable indicator of market liquidity – but this can produce catastrophic results when the program
continues to act on the instruction (“volume = liquidity”) with a kind of strict logical consistency, even in
unexpected situations where the assumption becomes invalidated.

● The algorithm just does what it does. It doesn’t care that we “didn’t want” some unanticipated
inappropriate action or that we didn’t anticipate the new conditions that invalidated the assumption.

● We need to carefully scrutinize assumptions and even consider unlikely conditions that would

invalidate seemingly sensible assumptions. Especially useful here are “red teams” and other groups
of fresh eyes who look for exploitable aspects of the system.

59

Lessons Learned: Flash Crash
Lesson 3 Automate Safety: The need for pre-installed and automatically executing safety
functionality – as opposed to reliance on runtime human supervision – can be crucial.

● Some have put forth the theory that HFTs and automated mechanisms were actually a major
factor in minimizing and reversing the flash crash in the end.

● In other words, while automation contributed to the incident, it also contributed to its swift
resolution.

● The pre-programmed logic which ultimately suspended trading when prices moved too far
was set to execute automatically because it had correctly anticipated that the triggering
events could happen on a timescale too swift for humans to respond.

 60

Lessons Learned: Flash Crash

Lesson 4 Spread out risk! If you're going to use, for instance, oracles feeding data (about
price data) from one source, assume that if an agent can manipulate that data at the source,
they will – and actually perform the calculations to figure out what will happen when they do!
Then do what you can to spread out risk, by incorporating data feeds from multiple sources.

Anticipate/Minimize Damage. If you cannot guarantee the elimination of certain risks, at
least ensure that the total amount lost, or damage done to users or people affected by your
code, is on a smaller scale or is contained.

If dangers cannot be avoided, put caps on them!

Lessons Learned: Flash Crash

Lesson 5 Don’t cut corners. People often are most concerned with shipping as fast
as possible, or getting things back up and running after a problem. But rushing these
things can have bad consequences. Prioritize safety over speed.

● These days, there is a lot of pressure to ship quickly, even if this means making
sacrifices. But the mantra “Break things first, ask questions later” is very
questionable advice, ethically-speaking, especially when a lot is at stake.

Meta-Lessons Learned from the Examples

● The goal is not so much avoiding all problems. After all, if you knew about them as
problems to begin with, they would surely have been avoided in the first place!

● Rather, computerized systems should be designed in such a way that, when problems
do arise, they can be resolved, and the system can be self-correcting.

● Moreover, as far as humans users and operators of that system are concerned, an
important question to always keep in mind is:

How do you write code, and align the incentives of the relevant users of such
code, in such a way that, over the long-term, whenever problems or
unintended results arise, the people involved have both the incentives and
resources for repairing the system?

63

Assignment: Reflecting on Ariane 5

See associated Assignment Sheet

64

