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Introduction

It is difficult to overstate how dependent we are today on computers and 
computerized systems to facilitate so many of our daily activities. Such 
systems now govern most of modern communication, transportation, 
finance, retail, healthcare, military systems, and more.  

When computerized systems work correctly, they can of course save us 
time, money, and enable the accomplishment of many other activities. 
But when they fail or something goes wrong, any of those benefits can 
quickly be overturned by rather disruptive or impactful harms.  Failures 
of computer-integrated systems can ramify throughout many areas of 
society, resulting in lost time, lost money, social injustice, and even injury 
or loss of life. 
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Introduction
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Computers and code nearly always form part of larger 
systems – like financial systems, health-care systems, 
transportation systems, etc. – and fundamentally it is 
the reliability of the entire system that is most important. 

A system that is designed well is one that can tolerate 
the malfunction of any single component without failing 
or causing harm. 



Introduction
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These two-paired modules are designed to 
familiarize you with:  

● some of the ways in which computerized 
systems have proven to be unreliable, what 
we can do to make them more reliable,

● what the broader ethical stakes are, and 
● general practices we can implement to 

encourage greater awareness and 
anticipation of the risks.



Specific Objectives
The main purpose of this two-part Reliability & Liability module is to invite aspiring computer 
scientists and others involved in the construction, design, upkeep, and testing of large systems or 
components thereof to increase their awareness of some of the broader ethical risks associated 
with the variety of ways things can go wrong. 

Module 1
● A number of carefully-selected examples to illustrate three main errors types
● Important lessons drawn from each of those examples 
● An assignment for students

Module 2
● General tools to better identify and mitigate ethical risks
● An assignment for students
● Further readings and resources 
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Three Error Types
We can identify three main sorts of errors, each of which will be illustrated in turn via 
concrete examples and discussion of those examples: 

1. Errors in data-entry or data-retrieval 

2. Errors, bugs, or code features that enable system malfunction

3. Errors, bugs, or code features that enable system failure 
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1. Errors in data-entry or data-retrieval 
Example 1: National Crime Information Center (NCIC)
Example 2: Amazon AWS Crash
Example 3: Hawaii Missile Alert
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1. Errors of data entry or retrieval 
First, let us look at examples where the user or the 
computer-human interface turns out to be the weak link 
in the system, leading to some problem.  We can call 
these issues system errors due to data entry or data 
retrieval. 

This is just what it sounds like. Sometimes, computerized 
systems fail or behave in unexpected ways as a result of 
wrong data having been entered into them or because 
people incorrectly interpret the data they retrieve. 
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1. Errors of data entry or retrieval 
While it is tempting to want to focus on a particular mistake made by an individual person entering 
or retrieving the data, we should keep in mind that any system

● like the voting system failing after incorrect records inputted into the computer database 
disqualified thousands of voters, or 

● like the criminal justice system failing when a person is arrested after being confused with 
another person in a database 

is larger than the individual person or persons who make the error. 

Therefore, it is often more useful to focus on how such local errors are possible in the first place, 
how they are allowed to propagate through a system to become global or larger-impact problems, 
and how to anticipate and mitigate the risks associated with this. 

å
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Example 1: National Crime Information Center (NCIC) 

The FBI National Crime Information Center (NCIC) is a 
computerized database of criminal justice information 
made available to federal, state, and local law 
enforcement and other criminal justice agencies for 
ready access by the criminal justice agency making an 
inquiry. This information is designed to assist authorized 
agencies law enforcement objectives, such as 
apprehending fugitives, locating missing persons, 
looking up criminal records, locating and returning stolen 
property, etc. 
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Example 1: National Crime Information Center (NCIC) 

Tens of thousands of law enforcement agencies have 
access to these data files, and the NCIC processes more 
than 13 million requests for information each day. 

For example, a police officer may initiate an NCIC search 
during a traffic stop to find out if the vehicle is stolen or 
there is a warrant out for the driver, and the system 
supplies records and answers to such queries. 
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Example 1: National Crime Information Center (NCIC) 
A number of critics of the NCIC have pointed out ways in which the NCIC has led to a variety of 
injustices and privacy violations of innocent people, such as:

● Erroneous records entered in the database can lead law enforcement agencies to arrest 
innocent persons

● Typographical errors made by law enforcement checking the database have led to false 
arrests¹

● Innocent people with the same name as that of individuals listed in the arrest warrants 
database have been mistakenly arrested²

● Corrupt law enforcement employees with access to NCIC have sold information, altered, 
deleted, and otherwise misused records³
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1. https://www.llrmi.com/articles/legal_update/2015_maresca_v_fuentes/ 
2. Source: Rodney Hoffman. “NCIC Information Leads to Repeat False Arrest Suit.” Risks Digest8(71), May 17, 1989.
3. https://www.cbsnews.com/news/police-sometimes-misuse-confidential-work-databases-for-personal-gain-ap/ 



Example 1: National Crime Information Center (NCIC) 
For concrete instances of the many stories of police making false arrests based on information 
they retrieved from the NCIC, here are two:   

1. Roberto Perales Hernandez was jailed twice in three years as a suspect in a Chicago 
residential burglary, even though he had never been to Chicago in his life. The authorities 
had confused him with another Roberto Hernandez due to a single entry in the NCIC. The 
two Roberto Hernandezes were the same height, about the same weight, had brown hair, 
brown eyes, tattoos on their left arms, shared the same birthday, and had Social Security 
numbers that differed by just one digit.

2. Terry Dean Rogan was arrested five times – and twice at gunpoint!  – for crimes he didn’t 
commit. The NCIC had erroneously listed him as wanted for murder and robbery, even 
after the actual suspect using his name had been identified. 

13

● Martin D. Yant's Presumed Guilty: When Innocent People Are Wrongly Convicted



Example 2: Amazon AWS Crash: 
“Your internet will return in 2-5 business days!”
On Feb. 28, 2017, the Amazon AWS service crashed, 
causing many websites hosted by the software to become 
unresponsive. Amazon conducted an internal investigation 
and concluded that during a simple debugging, a single 
service member had executed a single command intended 
to remove a negligible amount of servers to help speed up 
the process. 

While Amazon was able to restore service fairly quickly and 
no data was permanently lost, it was reported that S&P 500 
companies lost an estimated $150 million, and U.S. 
financial services companies lost even more during the 
outage. All this economic carnage from entering a simple 
command incorrectly!
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● Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region: 
https://aws.amazon.com/message/41926/ 

● https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506



Example 3: Hawaii Missile Alert

Hawaii is the only state with a pre-programmed 
Wireless Emergency Alert that can be sent directly 
to wireless devices if a ballistic missile is heading 
toward the state. 

This is partly because if a missile were ever fired 
from North Korea, the missile would take 
approximately just 20 minutes to reach Hawaii.
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Example 3: Hawaii Missile Alert
In 2018, the alert had been inadvertently sent out by 
an employee of the Emergency Management 
Agency during a shift change. 

During the shift change, a supervisor initiated an 
unscheduled drill in which he contacted emergency 
management workers in the guise of an officer from 
US Pacific Command. 

The supervisor deviated from the script, at one point 
saying "This is not a drill," although he did state both 
before and after the message, "Exercise, exercise, 
exercise," to indicate that it was in fact a test.  
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Example 3: Hawaii Missile Alert

Upon hearing the supervisor's statement, the 
employee assuming their post believed there was an 
actual emergency, and proceeded to click the alert 
button from a dropdown of options, which would send 
out an actual notification on Hawaii's emergency alert 
interface. 

The employee then clicked through a second screen, 
which had been intended as a safeguard, to confirm. 
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Hawaii Emergency Management Agency officials were 
subsequently asked for a screenshot of the interface the 
employee was looking at when the false alert was sent out. 
They gave a “facsimile” of the UI (not the actual screen, for 
security purposes), the archaic design, logic and layout of 
which was subsequently widely criticized. 

“DRILL-PACOM (DEMO) STATE ONLY” 

was the link the employee should have clicked on for the test. 

Listed further below is the link “PACOM (CDW) — STATE 
ONLY,” the link that he did in fact click, leading to the 
incoming ballistic missile alert sent to residents and visitors 
statewide.

Example 3: Hawaii Missile Alert
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Lessons Learned: Errors of data entry or retrieval 

From the perspective of those responsible for well-engineered systems and the 
code-elements of such systems, it may appear (and may be the case) that 
certain aspects of such “user errors” are inevitable. 

The proper response to these things may indeed largely depend on the proper 
training of human users. But as ethically responsible coders, there are still 
general principles we can adopt that will allow us to do all we can to avert such 
errors or at least minimize the harmful effects of such unfortunate cases.  
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● Norman, Don. The design of everyday things. ISBN 978-0-465-06710-7. 



Lessons Learned: Errors of data entry or retrieval 
Adopting a modified version of an insight from Don Norman*:

● Don't think of the user as making errors; think of the actions as approximations of what the 
system intends. 

● Anticipate and build into the system tolerances and safeguards to the potential “errors” in 
such approximations.  

● Remember that a well-engineered system does not fail when a single component fails. If 
there are ways a single human user can cause large-scale deviations from intended use, 
the effects of such local deviations on the broader system should be anticipated, 
minimized, and safeguarded against as much as possible. 
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● Norman, Don. The design of everyday things. ISBN 978-0-465-06710-7. 



Back to the Errors: Two Errors of Another Sort 
Errors of data-entry or retrieval can be harmful. However, it remains the case that their 
analysis is typically comparatively uncomplicated, and the measures we can take are often 
straightforward.  

Even supposing data entered into, or retrieved from, a computer system are correct, the 
system may still produce wrong or undesirable results, and may even collapse entirely if the 
errors are serious enough. In such cases, we can identify the other two main sorts of errors: 

2. Errors, bugs, or code features enabling system malfunction

3. Errors, bugs, or code features enabling system failure 

The ethical risks and liabilities of these two sorts of errors are generally harder to mitigate 
and/or involve the greatest potential for harm.
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2. Errors/Bugs enabling system malfunction
Example 1: Speel chek 
Example 2: High-Risk Inmates Mistakenly Released
Example 3: Rent Miscalculation
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Example 1: Speel chek 
A University of Pittsburgh study revealed that, for most students, computer spelling and 
grammar error checkers actually increased the number of errors they made. 
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● D. F. Galletta, A. Durcikova, A. Everard, and B. Jones. “Does Spell-Checking Software Need a Warning Label?” 
Communications of the ACM, pp. 82–86, July 



Example 2: High-Risk Inmates Mistakenly Released
In 2010, in the course of implementing a program 
meant to lessen prison overcrowding, more than 400 
California prison inmates classified as “high risk of 
violence” were mistakenly released, owing to 
“computer errors.” 

An additional 1,000 prisoners deemed to present a 
high risk of committing other crimes were also let 
out, stemming from those same errors. 

None of the prisoners could be returned to prison or 
retroactively put on supervised parole, as they had 
already been granted “non-revocable parole.” 
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● “Computer errors allow violent California prisoners to be released unsupervised” Los Angeles Times, May 26, 
2011.Los Angeles Times, May 26, 2011.

 



Example 2: High-Risk Inmates Mistakenly Released

Under the law that created non-revocable parole, inmates 
are excluded if they are gang members, have committed 
sex crimes or violent felonies, or have been determined to 
pose a high risk to reoffend based on an assessment of 
their records behind bars. 

The computer program that prison officials used to make 
that assessment did not (and could not) access an 
inmate’s disciplinary history. The program also relied on a 
state-level Department of Justice system that recorded 
arrests but was missing conviction information for nearly 
half of the state’s millions of arrest records.
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● “Computer errors allow violent California prisoners to be released unsupervised” Los Angeles Times, May 26, 
2011.Los Angeles Times, May 26, 2011.

 



Example 3: Rent Miscalculation 
Between September 2008 and May 2009, 
hundreds of low-income families living in public 
housing in New York City were charged too much 
rent because of a “computer error,” specifically an 
error in the program that calculated monthly bills. 

For those nine months, the New York City 
Housing Authority ignored the complaints made 
by the renters that they were being overcharged. 

Instead, it took to court and threatened with 
eviction many of those who failed to make the 
higher payments.
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● Manny Fernandez. “Computer Error Caused Rent Troubles for Public Housing Tenants.” New York Times, August 5, 
2009. 



Lessons Learned: Errors/Bugs enabling system malfunction

Lesson 1  Avoid “automation bias” (Spell Check and Rent Miscalculation)

● Automation bias is a term often used to describe our documented habit of 
favoring or deferring to suggestions coming from automated decision-making 
systems and programs, to the point of ignoring contradictory information from 
sources not deploying automation, even when that information is correct. 
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Lessons Learned: Errors/Bugs enabling system malfunction

Lesson 2   Ensure that the program has all the relevant data in the first place, not just that 
it operates correctly with any data it is already assumed to have (Inmates Released)   

● Sometimes failures of a program to query certain data can, in the broader context of 
the way the program is used, lead to flaws in the implementation of the program in its 
native context of use. 

● Be sure to not just check the program in terms of how it operates with the data it has at 
the code-level, but also to consider whether the program itself is calling on all the 
relevant data it needs in order to be implemented correctly or appropriately in the 
broader context of use. 
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3. Errors/Bugs enabling system failure

Example 1: Boeing 737 Max Crash 
Example 2: Tesla 2016 Crash
Example 3: Patriot Missile System
Example 4: Ariane 5
Example 5: Robot Mission to Mars
Example 6: Flash Crashes
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Example 1: Boeing 737 Max Crash

While the National Transportation Safety Committee’s 
(NTSC) final report lists nine contributing factors, the 
most serious seems to have been those pertaining to the 
“angle of attack” sensor and assumptions that were 
made about flight crew response to malfunctions. 

Even though these assumptions were consistent with 
current industry guidelines, they turned out to be 
incorrect. 

30

● The Boeing 737 MAX: Lessons for Engineering Ethics; NTSC Final Report; What Caused the 737 Crash?: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351545/ 

On October 29, 2018, a Boeing 737 Max airplane flying 
from Jakarta crashed into the Java Sea just 13 minutes 
after takeoff, taking the lives of all 189 passengers and 
crew. Subsequent investigations revealed flight control 
problems, failures of an “angle of attack” sensor, and 
other failures tied to a design flaw in a core system of 
the Max series. Less than 6 months later, in 2019, 
another 737 Max crashed only 6 minutes after takeoff, 
taking the lives of all 157 people aboard. 



Example 1: Boeing 737 Max Crash

As a flight expert explained: 

“In the two recent Boeing 737 Max crashes, it appears that the sensor sent 
wrong information to the flight control system indicating the angle of attack is 
too large and approaching stall, so the system steered the aircraft by pitching 
the nose down to correct the angle of attack. The pilots realized this was a 
wrong command and they tried to override the system, but it appears they 
could not figure out how to override it. So the planes went into a dive and 
eventually crashed...We are not at the phase where pilots should be left out of 
the cockpit. We think pilots still should fly the airplanes. Those two accidents 
are not due to poor design, it’s more because of a judgment call in 
programming, a small error that made such a big impact.” 
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● The Boeing 737 MAX: Lessons for Engineering Ethics; NTSC Final Report; What Caused the 737 Crash?: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351545/ 



Example 2: Tesla 2016 Crash

After 2014, Tesla started equipping its cars with 
“Autopilot” software that enabled the car to control its 
speed and steer, including an Automatic Emergency 
Braking (AEB) system. 

They claimed the driver should use this autopilot 
“when the conditions are clear...with the expectation 
that the human driver will respond appropriately to a 
request to intervene...The driver is still responsible for, 
and ultimately in control of, the car” (Tesla). 

On May 7, 2016, Joshua Brown was killed when his Tesla 
crashed into the semi-trailer portion of a truck on a 
highway. The accident occurred as Brown’s Model S, with 
Autopilot engaged, was traveling east on a divided 
highway. The truck had been traveling in the opposite 
direction on the highway, and turned left in front of the 
Tesla. The semi-trailer portion was elevated enough off 
the ground that the car continued under it, shearing off its 
roof, after which the Tesla was sent veering off the road.
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● Quinn's Ethics for the Information Age, Chapter 8, for more extensive discussion of this incident.
● https://electrek.co/2016/07/02/tesla-autopilot-mobileye-automatic-emergency-braking/ 



Example 2: Tesla 2016 Crash

After Brown’s crash in 2016, the subsequent NTSB 
investigation determined that Autopilot was 
engaged for 37 minutes before the collision, during 
which time Brown’s hands were on the steering 
wheel for only 25 seconds. 

He received seven visual and audible warnings to 
put his hands back on the steering wheel. 

As for the AEB system, when the truck turned in 
front of the Tesla and Brown failed to respond, why 
didn’t it engage?
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● Quinn's Ethics for the Information Age, Chapter 8, for more extensive discussion of this incident.
● https://electrek.co/2016/07/02/tesla-autopilot-mobileye-automatic-emergency-braking/ 



Example 2: Tesla 2016 Crash

Mobileye, which supplied the vision system for 
Autopilot, provided the explanation that the system 
was designed to avoid rear-end collisions, but not to 
avoid vehicles crossing laterally. 

After Mobileye issued that statement, Tesla quickly 
released a “clarification” in which it noted its autopilot 
system relies on dozens of technologies to determine 
how it should respond to a particular situation. 

According to Tesla, automatic braking did not engage 
because the trailer was white, making it difficult to see, 
and the trailer was tall, making the radar confuse it for 
an overhead sign. 
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● Quinn's Ethics for the Information Age, Chapter 8, for more extensive discussion of this incident.
● https://electrek.co/2016/07/02/tesla-autopilot-mobileye-automatic-emergency-braking/ 



Lessons Learned: Errors/Bugs enabling system failure
Lesson 1 In the case of automated components of a system, even seemingly reasonable assumptions about the expected 
behavior of human operators – in the face of both malfunctions and ordinary operation – should be carefully scrutinized. 

Lesson 2     Smooth transition passing control between automated control and human operation should be carefully 
considered, both at the level of the code and system design. 

● If operators (pilots, drivers) do not place enough trust in an automated system, they may inject risk by intervening in 
system operation; but conversely, if pilots trust an automated system too much, they may either suffer from automation 
bias and fail to intervene when necessary, or lack sufficient time to act once they identify a problem. 

● While clear transitions back to human control or manual override should be built into systems, experts have noted how in 
many emergency situations there simply may not be enough time for a human operator to retake control before an 
accident occurs. Thus, in general, automated control systems should be designed in such a way that while humans 
always can take over in an emergency situation, humans are never needed to takeover in any of the emergency 
situations. 

Lesson 3 Sensor misinformation (as with the angle attack) or edge cases involving misidentification (as with the Tesla 
sensor mistaking the trailer portion of the truck for a sign) need to be considered in advance, and code-level mechanisms put in 
place to minimize the potential harm of such things in those rare circumstances where they do occur.  
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Example 3: Patriot missile system 
The Patriot missile system was originally designed by the 
US Army to shoot down airplanes. In the Gulf War of 1991, 
the Army put the Patriot missile system to work defending 
against Scud missiles launched at Israel and Saudi Arabia. 

At the end of the Gulf War, the Army claimed the Patriot 
missile defense system had been 95 percent effective at 
destroying incoming Scud missiles, but later analyses 
showed that perhaps as little as 9 percent of the Scuds were 
actually destroyed by Patriot missiles. 

As it turns out, many Scuds simply fell apart as they 
approached their targets -- their destruction had nothing at 
all to do with the Patriot missiles launched at them.
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Example 3: Patriot missile system 
The most significant failure of the Patriot missile system 
occurred during the night of February 25, 1991, when a 
Scud missile fired from Iraq hit a US Army barracks, 
killing 28 soldiers. 

The Patriot missile battery defending the area never 
even fired at the incoming Scud. A report traced the 
failure of the Patriot system to a surprisingly trivial 
software error. 

The Patriot system failed to track and intercept the 
incoming Scud due to a truncation error involving a loss 
of precision in converting integers to a floating point 
number representation!
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Example 3: Patriot missile system 
The Patriot missile battery did detect the incoming Scud missile as it first came over the 
horizon. But in order to prevent the system from responding to false alarms, the 
computer had been programmed to check multiple times for the missile. It would do this 
by predicting the flight path of the incoming missile, directing the radar to focus on that 
area, and scanning a segment of that area, called a range gate, for the target. In this 
particular case, the program scanned the wrong range gate and thus failed to detect 
the missile. 

Why was the wrong range gate scanned by the program? The prediction of where 
the Scud will next appear is a function of the Scud’s velocity, of course determined by 
its change in position with respect to time, where time is updated in the Patriot’s internal 
system clock in 100 ms intervals. Velocity was represented as a 24-bit floating point 
variable, and time as represented as a 24-bit integer, but both must be represented as 
24-bit floating point numbers in order to predict where the Scud will next appear.

The conversion from integer time to real time results in a loss of precision that 
increases as the internal clock time increases. The error introduced by the conversion 
results in an error in the range gate computation,proportional to the target’s velocity and 
the length of time that the system is running. The longer the system ran, the more these 
truncation errors added up – leading to disaster.  
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● Figure from Data representation: case study: 
http://8051-microcontrollers.blogspot.com/2015/01/data-representation-case-study-patriot.html#.YNoLzhNKjHF  



Example 4: Ariane 5
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The Ariane 5 was a satellite launch vehicle designed 
by the French space agency. 

During its maiden flight in 1996, about 40 seconds 
after takeoff, a software error caused the active and 
backup computers to shut down, resulting in the total 
loss of altitude control. The vehicle self-destructed. 

While no one was injured, the uninsured rocket carried 
satellites worth $500 million, making it the costliest 
error (in dollar terms) in history at the time.  



Example 4: Ariane 5
The software error that ultimately led to the crash was traced to a piece of code 
that converts a 64-bit floating-point value into a 16-bit signed integer. The input 
value that was to be converted ended up exceeding the range of what could be 
represented as a 16-bit signed integer. Moreover, there was no explicit 
exception handler to catch the overflow exception, so the uncaught exception 
crashed the entire software and the onboard computers. Arguably, this 
unhandled overflow exception was a main reason for the disaster. 

As it turned out, this piece of code had been part of the 10-year-old software for 
the Ariane 4. Furthermore, the code that might have caught and handled the 
conversion errors had been disabled on the Ariane 4 – since, for that system, 
performance constraints made such overflow errors irrelevant – yet, as it turned 
out, those same performance constraints did not apply to the Ariane 5. The 
velocity reached by the Ariane 5 was much greater, and too high to be 
represented as a 16-bit integer, yet exception-handling had been suppressed. 
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Example 4: Ariane 5
The Ada language (which was used for the Ariane’s software) generates an 
exception if a floating-point number is too large to be converted to an integer; but 
the programmers had decided that this situation would never happen and thus 
didn’t provide an exception handler.  

The original programmer of the subprogram for converting a floating point 
number to a signed 16 bit number likely realized that the value of the floating 
point number to be converted must lie within a restricted range – but such 
restrictions on input values (preconditions for subprograms) were neither 
systematically derived nor well-documented. 

A decision had also been made by the Ariane 5 team not to provide an overflow 
exception handler because the processor was already heavily loaded.
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Example 4: Ariane 5
The code was designed such that, in the event of any exception, the failure 
should lead the main processor to be shut down, and to switch to a backup. 
Since there was no exception handler in the code, when the overflow happened, 
the main software component failed and the system attempted to revert to the 
backup system. However, that backup system (based on the Ariane 4) was 
identical in hardware and software to the active one, and so it could not be 
activated because it had failed for exactly the same reason!

An irony was that the overflow conversion error that caused the issue occurred in 
a routine that had been re-used from the Ariane 4 vehicle, but was not even an 
appropriate computation to require for the Ariane 5. Moreover, as the 
computation that failed was not supposed to be required for Ariane 5, there was 
no associated requirement, so no tests were made of that portion of the 
software. The main code component in question had been validated for the 
Ariane 4, so no further testing with hardware and software, or test simulations 
with real data from the actual Ariane 5 trajectory, were ever performed.
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● For more, see "Design by Contract: The Lessons of Ariane," 
https://homepages.cwi.nl/~storm/teaching/reader/JezequelMeyer97.pdf 



Lessons Learned: Errors/Bugs enabling system failure
Lesson 1 Apparently small errors can accumulate and have non-small consequences (Patriot Missile)  

● Take seriously the treatment of types, errors in final computations that can occur by, for instance, treating a 
floating point value like an integer, etc. 

Lesson 2 It can be dangerous to reuse code, especially without a precise specification mechanism; any software 
element with a fundamental constraint should state this explicitly (and provide thorough documentation) -- without 
this, it is safer to redo rather than reuse (Ariane 5)

● As the Ariane 5 example demonstrates, assumptions that were valid when the code was originally written may 
no longer be true when the code is reused. Since some of these assumptions or constraints may not be stated 
explicitly or well-documented, the new team may not have the opportunity to check if these assumptions still 
hold true in the new system.

● In programming courses, one often learns to reuse code. The Ariane 5 incident provides a cautionary tale for 
what can go wrong if we aggressively reuse code in a thoughtless manner or do not provide proper 
documentation. Note that reusing code does not always increase the quality of the final product.
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Example 5: Robot Mission to Mars
NASA built the Mars Climate Orbiter to facilitate communications between 
Earth and automated probes on the surface of Mars, including the Mars 
Polar Lander. In 1999, the spacecraft was lost because of a 
miscommunication between two support teams on Earth.

The issue could be traced back to the fact that the flight operations team 
based in Colorado designed its software to use English units, so that its 
program output thrust in terms of foot-pounds units. The navigation team 
at the Jet Propulsion Laboratory in California, on the other hand, designed 
its software to use metric units, so its program expected thrust to be input 
in terms of newtons. One foot-pound equals 4.45 newtons. 

On September 23, 1999, the Climate Orbiter neared Mars, and when it 
was time for the spacecraft to fire its engine to enter orbit, the Colorado 
team supplied thrust information to the California team, which then relayed 
it to the spacecraft. But there was a units mismatch, so the navigation 
team specified 4.45 times too much thrust, and the Orbiter flew too close 
to the surface of Mars and burned up in its atmosphere!
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Lessons Learned: Systems can fail on account 
of miscommunications among people. 

● In this case, the output of one program was 
incompatible with the input to the other 
program, and a poorly specified interface, 
together with miscommunication, allowed this 
error to remain undetected until after the 
spacecraft was destroyed.

● This example is discussed in Quinn's Ethics for the Information Age, which includes a more extensive discussion.



Example 6: Flash Crashes
● A flash crash is when there is a sudden 

and extreme plunge in prices of a stock, 
commodity, bond, currency, some other 
security, followed by a quick recovery. 
These are not generally crashes that occur 
due to any perceived change in the 
fundamental value of the stock. 

● While there is some debate about the 
ultimate cause of flash crashes – which 
continue to be semi-regular occurrences in 
financial markets – it is evident that 
algorithmic trading and the heavy use of 
automated trading computer programs and 
bots are one of the main causes.

45



2010 Flash Crash 
The 2010 Flash Crash is the market crash that occurred on May 6, 2010. 
During the crash, leading US stock indices, including the Dow Jones, S&P 
500, and Nasdaq Composite Index, tumbled and partially rebounded in less 
than an hour. The day was distinguished by extremely high volatility in 
trading. While the market indices managed to partially rebound in the same 
day, in the 15 minutes this whole debacle took to unfold the flash crash 
erased almost $1 trillion in market value!

After the Flash Crash of 2010, there were congressional hearings and other 
investigations. 

Since then, there have been at least 5 other very notable flash crashes, 
where the impact is felt market-wide. But to this day, across all markets, 
there are by some estimates at least 10 mini flash crashes per day!  
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2010 Flash Crash 
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The massive decline in market prices was 
triggered by 

● A single selling order of a large amount of 
S&P contracts, 

● subsequent aggressive selling orders and 
automated strategies executed by 
high-frequency algorithms, 

● small but not negligible delays suffered by 
the exchange computers in relaying accurate 
price data on to brokers and other trading 
platforms, together with 

● some complex feedback loops involving 
trading bots and leading to accelerated 
downward price spiral.



Breaking Down the Crash: Automatic Sell Orders 
After the plunge in 2010, several reports indicated that while 
the event may have been initially triggered by an unusually 
large sell order for a particular big stock, this incited massive 
algorithmic trading automated orders to dump the stock via 
their “stop-loss” mechanism, which created a cascade of 
downward pressure.  

A stop-loss order is essentially an automatic conditional 
trade order given to trigger a sale when a certain price level 
is reached to the downside (provided sufficient volume is 
present), and is typically used by traders to “cut losses.” 
Such orders are set to trigger once the price of the stock in 
question falls below the specified stop price threshold. Such 
orders are fundamentally designed to limit an investor’s loss 
on a position. 
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if ((price < stopLossThreshold) && (volume > 
minViableVol)):

MarketSellOrder; 
else;  



Breaking Down the Crash: 
Automatic Sell Orders 
When a sale order for a stop-loss order is made, it can 
execute as either a market order or a limit order (though 
typically, it is as a market order). 

A market order executes immediately, at whatever 
price the market is trading at that moment. 

A limit order is a designated order “put on the order 
books,” that gets filled only if the further specified limit 
price is reached. 

The risk associated with stop-loss orders can be 
particularly extreme if prices plunge as they do during a 
flash crash. 
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● Image from Forex: Stop-Loss: https://www.babypips.com/learn/forex/stop-loss-whats-that

● A risk with a stop-loss order (executed as a 
market order) is that it triggers after a certain 
threshold is reached, but by the time the market 
order is executed, actually selling the stock, the 
price has slipped a great deal lower than that 
threshold, incurring bigger losses. 

● No matter how quickly the price rebounds, once 
the stop-loss is triggered, it is triggered, and 
you sell at a loss (possibly extreme, if the order 
is executed at market price and the price 
moved a lot from the trigger level).



Breaking Down the Crash: High-Frequency Traders 
● High-frequency traders (HFTs), using more 

sophisticated algorithmic trading strategies, are another 
factor in flash crashes. HFTs make use of algorithms to 
carry out large transactions, executed at high speeds. 

● Such HFTs have also used algorithms to carry out 
market manipulation activities like ‘spoofing’, which is 
basically where algorithms place fake but large sell 
orders on the order books to intimidate or influence 
market participants, and then remove the order the 
moment before it gets filled. The purpose of spoofing 
can be to create the illusion of volume, artificially trick 
market participants into thinking that mass selling (or 
buying) is happening when it actually is not (since the 
orders are not meant to be filled), increase noise, clog 
exchanges, and generally outwit or intimidate 
competitors.
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“Ah, things are 
getting volatile! 
Let me place a 
“crazy” buy stub 
quote order all 
the way down 
here. If it fills, 
lucky me!”



Breaking Down the Crash: High-Frequency Traders 

● There are further algorithmically-executed 
strategies, such as placing ‘stub quotes’ conditional 
on certain other factors (such as high volatility): a 
stub quote (also known as a placeholder quote) is 
an order to buy or sell shares that is deliberately set 
far lower or higher than the prevailing market price 
and are not generally expected to execute. 

● In extreme situations – with extreme volatility (price 
swings) – stub quotes may actually get executed, 
and this will exacerbate any market volatility already 
present. 
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“Ah, things are 
getting volatile! 
Let me place a 
“crazy” buy stub 
quote order all 
the way down 
here. If it fills, 
lucky me!”



Important Assumptions Made by the Bots
1. Traditionally, one would assume that volume (the number of shares of the stock that change hands during 

a specified time period) is a good indicator of liquidity (actual money present on that market), i.e., one 
assumes

Volume ≈ liquidity  

Especially before algorithmic trading entered the picture, this was a sensible assumption: if there’s an 
increase in volume, it’s because actual money is trading hands between people making a trade; if there is 
little to no volume, it shows that liquidity has dried up. But as algorithms and high-frequency traders 
became increasingly active in markets throughout the early 2000s, computer-driven trading programs 
would pass stocks back and forth in “hot potato” fashion, causing big increases in trading volume, without 
this often reflecting any actual increase in demand and the associated liquidity injections that would 
normally come with this. 

2. Another normally reasonable assumption made by traders and their algorithms is that 

the quoted price of an asset = its actual price 

In other words, it is assumed that price “oracles” feeding their algorithms the price don’t lie. 
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Observe Simplicity of Each Individual 
Algorithm/Assumption

● Each of the described algorithms or trading programs is remarkably simple, on its 
own. 

● Looking closely at any one of them individually – say the stub quote order – there 
may be no reason to suppose that global system meltdown could arise from this.  

● Moreover, the assumptions made in certain of the conditionals appear entirely 
sensible. 

● However, composed together, and when (under unexpected circumstances) certain 
assumptions become erroneous, extreme and unanticipated effects can emerge on 
a large scale.   
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When Sensible Assumptions Go Wrong

● The assumption that trading volume is a good measure of liquidity turned out to 
be especially erroneous, which had disastrous effects as the algorithms were 
composed together and acted in concert.  

The increasingly aggressive selling and buying of large volumes of securities by the 
algorithmic trading bots resulted in enormous price volatility and high volume – 
which, mistaken for indicating high liquidity, led many algorithms to execute market 
orders, under the impression that there was liquidity/demand there to fill their orders. 
There was not, and so their orders would fill at prices that deviated from their 
stop-loss thresholds or expected price, often by ridiculous amounts.  

 54



When Sensible Assumptions Go Wrong
 

● Furthermore, an analysis of trading on the exchanges during the moments immediately 
prior to the flash crash revealed technical glitches in the reporting of prices on the 
stock exchange that further contributed to the drying up of liquidity. According to this 
analysis, technical problems at the New York Stock Exchange (NYSE) led to delays as 
long as five minutes in NYSE quotes being reported on the system that reports the 
current quoted prices. 

● At the same time, there were also errors in the prices of some stocks. Uncertain about 
prices, many market participants attempted to drop out of the market by posting stub 
quotes. Many high-frequency trading algorithms attempted to exit the market with their 
fast market orders, which began an “arms race” to the bottom – to the point that, in a 
flash, many orders got executed at stub quote levels, leading to ridiculously low prices 
in many stocks. 
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Ultimate Cause of the 2010 Crash?  

A peculiar combination of the algorithms compounded...

1. Initial large (“fat finger”) sell order →  
2. Many stop thresholds of automated stop-loss sell orders get triggered →  
3. Increased trading volume →
4. Since the automated trading programs operated under assumption that 

trading volume is a good measure of market liquidity (and liquidity generally 
means one can exit safely), this led to increased sell pressure, coupled 
with scarce liquidity triggering extreme price reduction 
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Ultimate Cause of the 2010 Crash?  
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...and further exacerbating factors…

1. Since algorithmic trading bots were also spoofing the order books 
& there were technical glitches in “price oracles” → 

2. The market was actually illiquid, contrary to what volume 
indicated → 

3. As many high-frequency trading algorithms attempted to exit the 
market with market orders as fast as possible (which were 
executed at the stub quote prices) → 

4. This had more of a domino effect 



Lessons Learned from Example 6 
Individually, the programs that contributed to the flash crash were not 
particularly intelligent or sophisticated, e.g., 

“sell if a certain price is reached and liquidity (= volume) is above some level.” 

Lesson 1  Emergent Failures: Interactions between individually simple 
components can produce unexpected effects when composed. 

● Systemic risk can build up as new simple elements are 
introduced to a system, once a certain threshold of composability 
is met, extreme conditions arise, or under the presence of certain 
erroneous assumptions. 

● In such cases, the risks may not even be obvious until after 
something goes wrong. In practice, such failures often pair with 
cascade effects – multiple failures that in isolation may have 
been minor or easily contained, but in concert produced 
aggregate disaster or consequences of great magnitude. 
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Don’t underestimate the power of 
composability and how many different 
protocols, code-components, and systems 
can interface and their vulnerabilities 
compound to create emergent failures. 



Lessons Learned: Flash Crash

Lesson 2  The Perils of Consistency: Smart professionals might give instructions to a program based 
on an ordinarily (or previously) sensible and sound assumption – like, the assumption that trading volume 
is a reliable indicator of market liquidity – but this can produce catastrophic results when the program 
continues to act on the instruction (“volume = liquidity”) with a kind of strict logical consistency, even in 
unexpected situations where the assumption becomes invalidated.
 

● The algorithm just does what it does. It doesn’t care that we “didn’t want” some unanticipated 
inappropriate action or that we didn’t anticipate the new conditions that invalidated the assumption.  

 
● We need to carefully scrutinize assumptions and even consider unlikely conditions that would 

invalidate seemingly sensible assumptions. Especially useful here are “red teams” and other groups 
of fresh eyes who look for exploitable aspects of the system.  
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Lessons Learned: Flash Crash
Lesson 3  Automate Safety: The need for pre-installed and automatically executing safety 
functionality – as opposed to reliance on runtime human supervision – can be crucial. 

● Some have put forth the theory that HFTs and automated mechanisms were actually a major 
factor in minimizing and reversing the flash crash in the end.

● In other words, while automation contributed to the incident, it also contributed to its swift 
resolution. 

● The pre-programmed logic which ultimately suspended trading when prices moved too far 
was set to execute automatically because it had correctly anticipated that the triggering 
events could happen on a timescale too swift for humans to respond. 
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Lessons Learned: Flash Crash 

Lesson 4     Spread out risk! If you're going to use, for instance, oracles feeding data (about 
price data) from one source, assume that if an agent can manipulate that data at the source, 
they will – and actually perform the calculations to figure out what will happen when they do! 
Then do what you can to spread out risk, by incorporating data feeds from multiple sources.

Anticipate/Minimize Damage. If you cannot guarantee the elimination of certain risks, at 
least ensure that the total amount lost, or damage done to users or people affected by your 
code, is on a smaller scale or is contained. 

If dangers cannot be avoided, put caps on them!



Lessons Learned: Flash Crash 

Lesson 5     Don’t cut corners. People often are most concerned with shipping as fast 
as possible, or getting things back up and running after a problem. But rushing these 
things can have bad consequences. Prioritize safety over speed. 

● These days, there is a lot of pressure to ship quickly, even if this means making 
sacrifices. But the mantra “Break things first, ask questions later” is very 
questionable advice, ethically-speaking, especially when a lot is at stake. 



Meta-Lessons Learned from the Examples 

● The goal is not so much avoiding all problems. After all, if you knew about them as 
problems to begin with, they would surely have been avoided in the first place! 

● Rather, computerized systems should be designed in such a way that, when problems 
do arise, they can be resolved, and the system can be self-correcting.

● Moreover, as far as humans users and operators of that system are concerned, an 
important question to always keep in mind is:  

How do you write code, and align the incentives of the relevant users of such 
code, in such a way that, over the long-term, whenever problems or 
unintended results arise, the people involved have both the incentives and 
resources for repairing the system?   
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Assignment: Reflecting on Ariane 5

See associated Assignment Sheet  
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