
A Sample of Ethical Issues in AI (for Clinical
Translational Seminar)

Daniel Rosiak

Case Western Reserve University

March, 08 2022

Outline of Contents

Intro

Brief Background on AI/ML

Deep Learning: Neural Networks

Some Ethical Issues that arise with Deep Learning
Opacity
Difficulty Generalizing / Brittleness
Bad Memory
Quantifying Uncertainty

Reinforcement Learning
Limitations with RL

Deeper Dive into Ethical Issues with Reinforcement Learning
Rigidity, Goal Blindness, and Value Alignment
A Glimpse into a more abstract/philosophical issue: wireheading

Intro

There are lots of powerful applications of AI today, including

I solving complex logistics problems that combine packing,
routing, and scheduling problems

I accelerating clinical trials

I getting cars to drive themselves

I “deep fakes”

I analysis of medical images for cancer detection

I insight into group dynamics via social network analysis and
sentiment classification

I determining when fruits are ripe and picking them

While it’s exciting, there are many ethical risks as well.

Ethical Risk

Ethical risks can be broadly defined to include any choices made,
or features of a system, that may cause substantial harm to
persons or other entities with a moral status (such as animals, the
environment, democratic institutions), or that may lead to
considerable controversy or dispute for other reasons.

A few prominent examples of AI systems with notable ethical risk:
I PredPol (predictive policing): PredPol is an ML program for police

departments that predicts hotspots where future crime might occur and
helps determine how to distribute police presence. It has been shown to
exhibit bias towards selecting low-income neighborhoods and locations
with higher minority concentration (Temming, 2017). This leads to
increased police presence in these areas, and by extension more
recognized crime reports and active responses from these areas.

I suicide prediction: using some metadata (such as health records, billing
data), a number of different research teams have used ML to predict
suicide within the next 2 years (sometimes with shockingly high
accuracy!)

I AdFisher (gender biases in Google search): more on this in a few slides

External vs. Internal Ethical Risks

When people think of ethical issues in AI, they often think of these
sorts of “external” issues, which largely present issues on account
of how they are deployed or how they might affect those who are
impacted by their conclusions.

While there is of course overlap, these sorts of issues could be
distinguished from internal issues, where this gets at core features
of the AI models and algorithms themselves (prior to, or largely
independent of, their use).

Continuity with non-AI tech

Especially with external issues (or issues of use), there seems to be
a lot of continuity with what we can observe with many
technologies, beyond algorithms and AI. But there is also continuity
at the level of design and constitutive features. For instance,

I Winner (1980) describes how the extraordinarily low-hanging
overpasses on Long Island were deliberately designed to
achieve the effect of discouraging the presence of buses, which
had the effect of limiting the entry of lower-income individuals
using public transit

I Recently, more attention has been given to the safety
disparities in the event of a car accident: the odds of a severe
injury or death is 73 percent higher for women than for men,
stemming mostly from the way car seats and seatbelts are
designed (Forman et. al, 2019)

Replication of (societal) bias (and intensification of
discrimination) by AI algorithms is an example of an issue that
seems not to be unique to AI, but it is an issue that has garnered a
lot of attention.

Replication of Societal Biases

There are a variety of ways machine learning (ML) systems can
codify, automate, and exacerbate societal biases. Such systems
reproducing already existing biases is something that often arises
on account of using small or non-representative data sets for
training, or through historical bias in the training data itself (some
examples below).

There are numerous high-profile accounts of such cases, for
example when gender biases in recruitment are replicated through
the use of machine learning or when racial biases are perpetuated
through machine learning in probation processes.

Historical Bias

In cases where little training data is available, it is generally
difficult to form a training data set that accurately represents the
population. Such training data commonly have historical bias, or
bias created by selective targeting over a period of time.

This problem frequently arises in ML implementations in the field
of criminal justice, namely due to historical discrimination against
minorities.

A notorious example of (racial) bias is provided by the COMPAS system, an
ML risk assessment algorithm used to predict reoffending risk in convicted
criminals (first used in legal courts by the state of Wisconsin). To train
COMPAS, it is given a large set of crime reports as training data. The racial
biases exhibited by COMPAS are likely learned from historical biases within the
crime reports themselves, such as a disproportionate number of the reports
being from low-income neighborhoods.

COMPAS frequently demonstrated a human-like bias towards race, wrongly
predicting “that black defendants would reoffend nearly twice as often as it
made that wrong prediction for whites” (Temming, 2017).

Another example comes from researchers at Carnegie Mellon, using
a tool they called AdFisher, which revealed that simulated male
users of Google were six times more likely than females to see
Google ads for high paying jobs (i.e., were shown online ads
promising to help get jobs paying more than 200k).

Ideas for Defending against such biases

1. making data sets and models come with annotations:
declarations of provenance, security, conformity, and fitness
for use.

2. de-bias the data: over-sample from minority classes, for
instance, to defend against “sample size disparity” (where this
refers to how, in most data sets there will be fewer training
examples of minority class individuals than of majority class
individuals – ML algos give better accuracy with more training
data, so that means members of minority classes generally can
expect to experience lower accuracy)

3. invent new ML models and algos that are more resistant to
bias

4. let a system make initial recommendations that may be
biased, but then train a second system to de-bias the
recommendations of the first one

Beyond Bias

Examples of bias garner a lot of attention in the media and academy.

But one could argue that problems of bias are comparatively simple (it’s often
simply a matter of “garbage in-garbage out”) and not unique to AI systems
(arguably the same sorts of biases and discrimination can crop up in the design
or implementation of other tech).

Moreover, there are a variety of important internal issues in AI (unrelated to
bias) that often fly under the radar, especially among the wider public of
non-experts, yet that seem to present equally risky ethical challenges.

Today we’ll focus on a few of the most notable issues/risks/challenges – of
potential ethical import – internal to AI models and algorithms.

Some Internal Features/Risks/Challenges that have Ethical
Import

I opacity vs. transparency

I rigidity, goal blindness, and misalignment

I difficulty generalizing / brittleness

I quantifying uncertainty

I bad memory

Brief Background on AI/ML

Background on Intelligent Agents

AI is fundamentally about building intelligent agents, where

Definition
An agent is anything that can be viewed as perceiving its
environment through sensors and that acts upon that environment
through actuators.

Background on Intelligent Agents

For instance,

I A human agent has eyes, ears, and other organs for its
sensors, and has hands, legs, vocal tract, etc. for actuators

I A robotic agent may have cameras, infrared range finders,
accelerometers, etc. for sensors, and motors, robotic arms,
etc. for actuators

I A software agent may have file contents, network packets, and
other user input (from keyboard/mouse/touchscreen/voice) as
sensory inputs, and may act on its environment by writing
files, sending network packets, displaying information,
generating sounds, etc.

Background on Intelligent Agents

The world around us is accordingly full of agents – such as,
thermostats, cellphones, and human beings.

Image from Intelligent Agents Lab

https://iagentntu.github.io/

Background on Intelligent Agents

Question: What makes an agent intelligent?

Background on Intelligent Agents

Well, minimally, we would like to construct an agent that is
rational, where what is rational at any given time arguably
depends on four things:

I the performance measure that defines the criterion of success

I the agent’s prior knowledge of the environment

I the actions that are available to the agent

I the agent’s percept sequence to date

Background on Intelligent Agents

Definition
A rational agent is an agent that, for each possible percept
sequence (i.e., the complete history of everything the agent has
ever perceived), selects an action that is expected to maximize its
performance measure, given the evidence provided by the percept
sequence and whatever built-in knowledge the agent has. (AIMA,
40)

Background on Intelligent Agents

As a practical matter, observe that rationality does not require
omniscience and/or perfection.
However, it often will require

I information gathering: doing actions in order to modify
future percepts (as in cases of exploring an environment)

I learning: an agent’s initial configuration could reflect some
prior knowledge of the environment, but as the agent gains
experience this may be modified and augmented

I some degree of autonomy: it should learn what it can to
compensate for partial or incorrect prior knowledge; while an
agent may have significant assistance from the prior
knowledge given to it by a designer, after sufficient experience
of its environment, the behavior of a rational agent can
become effectively independent of its prior knowledge

More on Learning

Definition
An agent is said to be learning if it improves its performance after
making observations about the world/its environment.

I Learning can range from the trivial and mundane, such as
jotting down and updating a shopping list, to the profound,
such as when Einstein inferred a new theory of the universe

I When the agent doing the learning is a computer – or when a
chief component of the functioning of an agent program is
that it learns – we call it machine learning (or ML for
short): here, a computer
I observes some data,
I builds a model based on that data, and
I uses that model as both a hypothesis about the world and a

piece of software that can solve problems

Motivation

But why would we want a machine to learn? Why not just
program it the right way to begin with?
There are two main reasons:

I First: the designers cannot anticipate all possible future situations – for
instance, a robot designed to navigate mazes must learn the layout of
each new maze it encounters

I Second: sometimes the designers have no idea how to program a solution
themselves – for instance, while most people are good at recognizing the
faces of family members, doing it subconsciously, the implicitness of this
activity is such that even the best programmers won’t know how to
program a computer to accomplish that task (except by using ML
algorithms).

General Observation

I The technology behind machine learning (ML) has become a
standard part of software engineering.

I Today, any time you are building a software system, even if
you don’t think of it as an AI agent, components of the
system can potentially be improved with ML – for example,
older software to analyze images of galaxies under
gravitational lensing was sped up by a factor of 10 million
with a machine-learning model.

I ML is currently the backbone of cutting-edge AI applications

Forms of Machine Learning
There are three main types of machine learning, stemming ultimately from
the three types of feedback that can accompany the inputs:

1. Supervised Learning: the agent observes input-output pairs and learns a

function that maps from input to output.
I For example, the inputs could be camera images, each one accompanied by an output saying “bus”

or “pedestrian,” etc. An output like this is called a label. Then the agent learns a function that,
when given a new image, predicts the appropriate label.

I In the case of braking actions, an input would be the current state (involving the speed and
direction of the car, road conditions, etc.), and an output is the distance it took to stop. In this
case, a set of output values can be obtained by the agent from its own percepts, after the fact –
the environment is the teacher, where the agent is learning a function that maps states to stopping
distances.

2. Unsupervised Learning: the agent learns patterns in the input without

any explicit feedback.
I The most common unsupervised learning task is clustering: detecting potentially useful clusters of

input examples – e.g., shown millions of images taken from the internet, a computer vision system
learns to identify a large cluster of similar images, each of which an English speaker would call
“cats.”

3. Reinforcement Learning: the agent learns from a series of

reinforcements, i.e., rewards and punishments.
I For example, at the end of a chess game, the agent may be informed that it has won (reward) or

lost (a punishment). It is up to the agent to decide which of the actions prior to the reinforcement
were most responsible for it, and then to alter its actions to aim towards actions that would obtain
more rewards in the future.

Unsupervised Learning as gateway to Deep Learning

Unsupervised learning consists of the suite of techniques and
algorithms used to find underlying patterns in data without the
need for humans to provide labeled (tagged) data.

I The underlying aspiration of this approach is that learning will “emerge”
through something resembling mimicry, where patterns are pulled out
from probability densities and the method comes to self-organize around
these emergent patterns

I As such, it will often find subgroups or hidden patterns within the dataset
that a human may not see

I The two main subcategories of unsupervised learning are neural networks
(inspired by the functioning of biological networks of neurons in the
brain) and the probabilistic methods

I And neural networks are themselves the workhorse of another very
important area: deep learning

Deep Learning

Deep learning is a very important area of AI these days. The ability
of deep learning to automate most of the process of feature
extraction – eliminating most of the manual human intervention –
derives a lot of its applicability from the fact that it works well on
unstructured data, particularly as 80-90 percent of an
organization’s data is estimated to be unstructured (source: IBM).

While deep learning can leverage labeled datasets (i.e., fit into the
supervised learning paradigm), it does not usually require a labeled
dataset and is content to take in unstructured data (hence its
general alignment with unsupervised learning, even though it really
cuts across these two areas).

In sum,

I Artificial Intelligence: any technique enabling computers to
mimic “intelligent” behavior

I Machine learning: any such technique where there is an
ability to learn without being explicitly programmed

I Deep learning: learning such that patterns are extracted
from data using neural networks

There are many other AI techniques and classes of problems – like
search problems, using things like genetic algorithms – that present
interesting ethical considerations but do not really fall under the
heading of machine learning or deep learning.

Instead, in the interests of space, I’ll tease out a few prominent
internal issues by focusing on issues as they arise in the context of
deep learning (via neural networks) on the one hand and
reinforcement learning on the other.

Deep Learning: Neural Networks

Learning in general

Definition
Deep learning is a broad class of techniques for machine learning,
based ultimately on neural networks, in which

I the word ‘deep’ refers to the fact that the underlying network
is typically organized into many layers (which means that
computation paths from inputs to outputs have many
sub-steps)

I these multiple layers are used to progressively extract
higher-level features from raw input, having broken it up into
many lower parts/layers

I the learning can be supervised, semi-supervised, or
unsupervised

Deep Learning Motivation

I Deep learning works especially well for
I visual object recognition
I speech recognition
I natural language processing
I reinforcement learning tasks with complex environments

Deep Neural Networks

Deep neural networks are just neural networks with many
(usually more than 3) layers between the input and output layers.
These additional layers enable it to handle greater complexity.

Sample of Applications

I virtual assistants like Alexa

I image recognition – deep-learning based image recognition has
attained very high levels, now consistently producing more
accurate recognition levels (of faces, signs, etc.) than human
contestants

I analysis of medical images for cancer detection

I social network analysis and sentiment classification

Another example: deep fakes via GANs

Deep fakes use deep learning – hence the name! – specifically
using something called a generative adversarial network (GAN),
where two “competing” neural networks are trained simultaneously,
the competition between the two being describable in the language
of game theory.

Another example: deep fakes via GANs

A GAN consists of

I the generator network

I the discriminator network (used as a classifier trained to
classify inputs as real (drawn from the training set) or fake
(created by the generator))

where the two are trained simultaneously, with the generator
learning to fool the discriminator and the discriminator learning to
accurately separate real from fake data.

The idea is that in the equilibrium state of the “game” they
are playing, the generator should ultimately reproduce the
training distribution perfectly, such that the discriminator
cannot perform better than random guessing.

GANS have worked particularly well for image generation tasks – in
particular, they are used in the creation of deep fakes.

See the Tom Cruise DeepFakes

https://www.youtube.com/watch?v=iyiOVUbsPcM&t=2s&ab_channel=Vecanoi

Some Ethical Issues that arise with Deep Learning

General Observation

Automated decision systems – especially those employing AI tools
– can bring a wide range of benefits, including more efficiency,
consistency and even fairness.

I AI in particular can improve efficiency by enabling us to make sense of
large amounts of data and, thereby make more informed decisions more
quickly and responsively. It can not only make us more productive and
knowledgeable, but also minimize bias and error: for instance, systems
trained to diagnose cancer are reaching higher accuracy rates than a
radiologist by collecting the knowledge that thousands of doctors have
made judgment calls in the past. By filtering through all the images and
only selecting the troubling ones, machines can relieve doctors from some
cognitive load who do not have to sort them all and help correct their
mistakes.

I The belief that algorithms can outperform expert judgment – and even
help reduce harmful bias – is shared by Nobel laureate Daniel Kahneman,
who made the argument at a conference on AI that the decision-making
process of humans is too “noisy” and therefore should be replaced by
algorithms whenever possible.

But they also give rise to new forms of harms and risks.
I A chief issue with automated decision systems is that the source of the

harm, or the cause of the risk, may be much harder to identify and
address, as compared to legacy human-operated systems.

Definition
Transparency (of an algorithm, application, or system) roughly
concerns how much it is possible – in theory – to understand about
the inner workings of the algorithm/application/system in question.

Definition
Opacity or opaqueness (of an algorithm, application, or system)
refers to a marked lack of transparency. It is closely related to –
and sometimes referred to under the label of – the black box
problem, where a black box is a general concept from
computing/engineering describing a system that can be viewed
entirely in terms of its inputs and outputs without any knowledge
of its internal workings.

I The generally opaque nature of many ML algorithms, and
many techniques used in deep learning, seems to present us
with a problem:

While AI is coming to permeate more and more areas and
is being used to address more and more social activities,
it is generally the case that the algorithms/mechanisms
underlying these tools are such that we cannot understand
how and why a decision has been made.

I This feature would appear to undermine our capacity for
guaranteeing fundamental social and ethical values.

How code is generally understood

Generally speaking, computer scientists typically have access to the
code, the trained rules, and the underlying architectures of the
systems that sustain their run-time operations.

I Keeping track of this is done using tools like using memory
snapshots and dumps (outputting a snapshot of memory
contents taken during program operation).

I Other approaches advantage sophisticated development
environments which can step through (line by line of code)
and monitor code execution, and the inputs, outputs, and
activity of functions and methods in the program.

The problem for much of AI, but especially for Deep
Learning

On the other hand, AI algorithms can be especially opaque. The
logic guiding the process of an ML algorithm’s production of a
given output for certain input – for instance, of the trained hidden
layer nodes of a deep neural network learning system – are not
accessible in such a direct way.

I In many instances, they can only be approximated or guessed
by using indirect means

An oft-cited problem – with ethical import – of neural networks is
their black-box nature.

Imagine a bank that is using an ML algorithm to recommend mort-
gage applications for approval. Suppose an applicant is rejected and
brings a lawsuit against the bank, alleging that the algo is discrim-
inating racially. The bank answers that this is impossible, since the
algo is deliberately blinded to race of the applicants. Even still, anal-
ysis shows that the bank’s approval rate for black applicants has been
steadily dropping. Submitting ten apparently equally qualified gen-
uine applicants further shows that the algo accepts white applicants
and rejects black applicants.

Finding the answer to what is happening here might not be easy. If
the ML algo is based on a deep neural network, for instance, it may
be close to impossible to understand why, or how, the algo is judging
applicants based on their race.

Opacity Dilemma

Let’s frame this opacity issue in terms of a related dilemma.

Dilemma: In order for certain AI algorithms, especially those involv-
ing deep learning, to serve the purposes that we want them to serve
by design, they tend to become more opaque to us (and, it may be,
necessarily so), thus getting in the way of interpretability, communi-
cability, and transparency.

It is entirely possible that the very design and key features that gives
deep learning the power and versatility that makes it so useful are
what also makes it potentially unpredictable and dangerous.

A potential solution?

One natural solution might involve making normative ethical goals
part of a deep learning neural network’s training regimen.

I The idea would be to train the system towards ethical
outcomes along with its other training.

I The ethical imperative would be enforced by the cost function
that measures the efficacy of the network for each iteration.

Related issue

This issue of opacity is closely related to explainability.

I Why does an AI suspect a person might be a criminal or have
cancer? The explanation for this and other high-stakes
predictions can have many consequences. Simpler problems?
What makes an image of a matchstick a matchstick? Is it the
flame or the wooden stick?

The field of explainable AI concerns making AI systems that can
explain themselves. A good explanation should generally have
several properties

I it should be understandable and convincing to the user

I it should accurately reflect the reasoning of the system

I it should be complete

I it should be specific – in the sense that different users with different
conditions or different outcomes should get different explanations

There are lots of open questions regarding what constitutes a fair
system, a good explanation and what level of transparency is
sufficient, as well as transparent to whom and for what purpose.
There are additional concerns as well, including arguments to the
effect that transparency may be neither feasible nor desirable.

I Too much transparency – up to the point of letting people know how
decisions were made – can allow them to “game the system” and orient
their data to be viewed favorably by the algorithm – which would both
invite a number of seemingly unfair outcomes and also make the
conclusions of the algorithm potentially less viable.

I There are broader issues with the very formulation of the notion of
fairness: we don’t want a risk assessment system to just recommend
“detain” for 100 percent of immigrants in custody, as one system did.

One suggestion has been made that systems ought to offer
counterfactual explanations, and provide the smallest change that
can be made by a user to obtain a desired result.

I In the case of an algorithm refusing someone a home loan, for
instance, the system should tell the person the reason, like too
little savings, but also what he or she can do to reverse the
decision – in that case, the minimum amount of savings
needed to be approved.

I However, observe that providing explanations alone does not
address the heart of the problem: knowing which features of
the data are used by automated systems to make a decision –
and whether or not they are appropriate for the decision in
question.

Another Issue: Difficulty Generalizing/Brittleness

There are many examples – like with imitation learning – where
the technique will mostly fail to generalize what it has learned to
novel environments and inputs in a sensible way.

And this, in turn, is closely related to something called brittleness.

For instance, neural networks are characteristically brittle:
changing a single pixel in the many-pixeled picture of the
organ of a sick patient can make the networks think the
patient is healthy.

An Example of Brittleness

Take a picture of a school bus.

(Google Inception-v3 classifier.)

An Example of Brittleness

Flip it so it lays on its side, as it might be found in the case of an accident in
the real world. A few studies have found that state-of-the-art AI that would
normally correctly identify the school bus right-side-up failed to do so on
average 97 percent of the time when it was rotated. They will say the school
bus is a snowplow with very high confidence. The AIs are not capable of a task
of mental rotation that even a 2 or 3 year old could do.

Lots of similar cases of AI brittleness. Another example commonly given is that
neural networks can be close to 99.99 percent confident that colorized static is
a picture of a lion.

This gets at what brittleness is about: the AI often can only recognize a
pattern it has seen before; showing it a new pattern, it can be easily fooled.

One way to make AIs more robust against such failures is to expose them to as
many confounding adversarial examples as possible. But even still, sometimes
that isn’t enough.

Another Issue: Bad Memory/Disastrous forgetting

Disastrous forgetting: The tendency of an AI to entirely and
abruptly forget information it previously knew after learning new
information, essentially overwriting past knowledge with new
knowledge. A big issue people often isolate in deep neural networks
is their generally “bad memory.”

It was often said that one main weakness of deep neural network
models is that, unlike humans, they are unable to learn multiple
tasks sequentially.

At first it appears that catastrophic forgetting was an inevitable
feature of these sorts of models, though in the last few years there
have been attempts to overcome this limitation and train networks
that can maintain expertise on tasks.

This issue of “bad memory” is closely related to the difficulty with
generalizing: for instance, sticking with neural networks, one often
needs to create a specialized network for each new task, to avoid
having updated data cause “forgetting” – yet this is generally not
scalable, as the number of networks increases linearly with the
number of tasks.

Another Issue: Quantifying Uncertainty

Neural networks also generally lack a framework for assessing the
level of certainty in the predictions they make: for instance, they
can tell you that with high probability that a patient is likely to
develop a disease, but they cannot tell you what the uncertainty
around this probability is.

Is it 0.95 ± 0.050 or 95 ± 10.9?

The former would amount to a strong prediction, while the latter is
a rather unreliable one.

Relates to trustworthiness...
Models developed using ML and deep learning are widely used for all
types of inference and decision making, meaning that it is increas-
ingly important to evaluate the reliability and efficacy of AI systems
before they are applied in practice, since the predictions made by such
models are subject to noise and model inference errors. Accordingly,
it is desirable to represent uncertainty in a trustworthy manner in any
AI-based system.

Yet people have only just begun working on developing a widely
accepted framework for this. There are a number of issues – like
several types of uncertainty that need to be quantified – that need
to be handled.

Reinforcement Learning

Reinforcement Learning Motivation

I Recall that with supervised learning, an agent learns by passively
observing example input-output pairs, as supplied by a “teacher” labeling
the data.

I With unsupervised learning, we relaxed the teacher requirement, and let
the system discover for itself patterns in unlabeled data.

I In reinforcement learning – the topic of the remaining slides – agents
can actively learn from their own experience, without a teacher, by
considering their own success or failure, where this means experiencing
rewards and punishments and letting these teach it how to maximize
rewards in the future.

Reinforcement Learning Motivation

Take the problem of learning to play chess.

Reinforcement Learning Motivation

I Let’s imagine we were to treat this as a supervised learning problem.

I Under the supervised paradigm, the chess-playing agent function would
then take as input a board position and return as output a move – so we
are effectively going to train this function by supplying examples of chess
positions, each labeled with the correct move.

I We happen to have available databases of several million games from
grandmasters of chess, each of which game consists of a finite sequence
of positions and moves. In this collection of games, the moves made by
the winner are – with the occasional exception – generally assumed to be
good (after all, they led to winning against another chess master!).

I Using such a database, it appears we have at our disposal a decent
training set.

Reinforcement Learning Motivation

But there’s a snag!
I Even though a couple million (108, say) games from grandmasters might

seem like a lot, the space of all possible chess positions is estimated to be
closer to around 10120 – which is massively larger than the number of
atoms in the observable universe (around 1080)

I Even if we restrict to the class of “sensible” games – not counting
positions that involve obvious game-losing moves, or ridiculous move
sequences – the result is closer to around 1040. Still! That is way more
than 108.

I Because of this, when confronted with a new game, it won’t take long
before they’re encountering positions that are significantly different from
any of those in the database, and in such instances the trained agent
function is likely to fail miserably – not least because it simply has no
idea what its moves are supposed to achieve or even the effect the moves
have on future positions.

Reinforcement Learning Motivation

I But...chess is just a very small part of the real world – which of course
involves problems and configuration spaces and environments way more
complex than chess...

I And for such problems, using the same supervised approach, we would
need the analogue of much vaster “grandmaster” databases.

I Yet, clearly, no such databases exist (or are even likely to be found
anytime soon)!

I The moral? To quote Yann LeCun,

“The AI revolution will not be supervised.”

Reinforcement Learning Motivation

An alternative approach is supplied by reinforcement learning
(RL).

I With RL, an agent starts out not knowing anything about its
environment – it knows only about which actions are available to it.

I It interacts with its environment (by, say, starting with random actions),
periodically receiving rewards (alternatively called reinforcements) that
reflect how well it is doing. In this way, with such feedback, by trial and
error it gradually learns about its environment and which sets of actions
in that environment enable it to reach a certain goal or obtain rewards.

Reinforcement Learning Motivation

I For instance, if we go back to the chess example: in playing
chess the reward can be 1 for winning, 0 for losing, and 1

2 for
a draw.

I Ultimately, the goal with RL is to have an agent that
maximizes the expected sum of rewards: an RL agent
develops its behavior by interacting with its environment,
weighing the punishments and rewards of its actions, and
developing policies that maximize rewards.

I In reinforcement learning, the agent is not given to know in
advance the transition model or even the reward function – it
simply has to act to learn more.

Reinforcement Learning Motivated

Here, you can see an RL algo in action, applied to the very similar
problem of a game of Pacman: Using Refinforcement Learning to
Play Pacman

https://www.youtube.com/watch?v=NV9xViSfoBA&ab_channel=MohamedHaseeb
https://www.youtube.com/watch?v=NV9xViSfoBA&ab_channel=MohamedHaseeb

Reinforcement Learning Motivation

Stepping back, let’s make some general observations:

I RL is about understanding the world through action,
about letting agents learn by trial and error

I RL is inspired by intelligent behavior in animals and humans.

Reinforcement Learning Motivation

Reinforcement learning in a nutshell:
Imagine playing a new game whose rules you don’t know, and the
aim of which you don’t know.
Suppose that after a hundred or so moves, a referee or scoreboard
tells you

“You lose!”

You then know that there was something suboptimal in your
sequence of actions – so you play again and again and try to
gradually hone in on those sequences of actions that arrive at the
rewards and avoid the punishments.
That is reinforcement learning in a nutshell.

Reinforcement Learning Motivation

Why do we want to do this?

I For one thing, providing a reward signal to the agent is
typically much easier than providing labeled examples of how
to behave. In general, the reward function is often very
concise and easy to write down explicitly: as for chess, it
requires only a few lines of code to tell the chess-playing
agent if it has won or lost the game

I Second, we don’t have to be experts, capable of supplying
the correct action for any possible situation (as we would have
to if we approached things via supervised learning)

Reinforcement Learning Motivation

As it turns out, though, a little bit of expertise can go a very long
way in reinforcement learning.

I When you have rewards like the win/loss rewards for chess or the win/loss
rewards for a car race, as above, these are often called sparse rewards,
since in the vast majority of states the agent can be in, they are given no
informative reward signal at all.

I In other settings – like playing tennis – we can easily supply additional
rewards for things done along the way, such as when a point is scored.
Similarly, in car racing, we could reward the agent for each lap it does in
the right direction around the track. An agent learning to walk can be
rewarded whenever it is both standing up and doing any forward motion.
These are called intermediate rewards, and their introduction can make
learning much easier

I As long as we can provide the correct reward signal, reinforcement
learning provides a very general and powerful way of building AI systems

I this is especially true for simulated environments, where there are plenty
of relatively risk-free opportunities to gain experience and learn by acting

Reinforcement Learning Motivation

Reinforcement learning is one of the most active areas of machine
learning (ML) research. Why?

I As just mentioned, providing a reward signal to the agent is typically
easier than providing labeled examples of how to behave, and we don’t
have to be experts

I It frees us from manual construction of behaviors and from labeling the
vast data sets required for supervised learning approaches

I It frees us from having to hand-code control strategies

I It’s especially useful for training an agent to perform certain skills we
don’t fully understand ourselves, or at least how to teach it explicitly –
like walking!

Learning to Park
Watch Learning to Park with Neural Networks and Proximal Policy
Optimization (a Reinforcement Learning approach)

“Basically, the input of the Neural Network are the readings of eight depth sensors, the car’s current speed and
position, as well as its relative position to the target. The outputs of the Neural Network are interpreted as engine
force, braking force and turning force. These outputs can be seen at the top right corner of the zoomed out camera
shots.
The AI starts off with random behaviour, i.e. the Neural Network is initialized with random weights. It then
gradually learns to solve the task by reacting to environment feedback accordingly. The environment tells the AI
whether it is doing good or bad with positive or negative reward signals.
In this project, the AI is rewarded with small positive signals for getting closer to the parking spot, which is
outlined in red, and gets a larger reward when it actually reaches the parking spot and stops there. The final
reward for reaching the parking spot is dependent on how parallel the car stops in relation to the actual parking
position. If the car stops in a 90 angle to the actual parking direction for instance, the AI will only be rewarded a
very small amount, relative to the amount it would get for stopping completely parallel to the actual direction.
The AI is penalized with a negative reward signal, when it either drives further away from the parking spot or if it
crashes into any obstacles.”

https://www.youtube.com/watch?v=VMp6pq6_QjI&ab_channel=SamuelArzt
https://www.youtube.com/watch?v=VMp6pq6_QjI&ab_channel=SamuelArzt

Cool Example of Multi-Agent RL: Open AI’s Hide-and-Seek

Check out Open Ai hide-and-seek!

A nice video summary here “OpenAi plays hide and side...and
breaks the game!”

https://openai.com/blog/emergent-tool-use/
https://www.youtube.com/watch?v=Lu56xVlZ40M&ab_channel=TwoMinutePapers
https://www.youtube.com/watch?v=Lu56xVlZ40M&ab_channel=TwoMinutePapers

Some prominent applications

I video games

I robotics

I self-driving cars

I content recommendations

I solving complex logistics problems that combine packing,
routing, and scheduling problems

I accelerating clinical trials

Limitations and Challenges with RL

I Manual specification: An oft-discussed weakness of the RL approach is
that researchers generally have to manually define a goal or reward
function corresponding to an agent’s goal (by at least specifying the
features of the environment that give out rewards and those that punish),
before the agent can learn the behaviors that help accomplish those goals.

I Unsafe behavior: For complex goals, this can be either too difficult or
there can be another problem: misspecified rewards may not only result in
bad performance, but also unsafe behavior!

I Misalignment: Because of this, some researchers have recently aimed to
make the reward function part of the learning process as opposed to
something that is specified before training. However, just because a goal
is learned (rather than specified in advance) does not mean that it is
aligned with our intentions! Moreover, there may be features of the
environment that the programmers didn’t think consciously of – and an
agent may exploit these features in unexpected ways!

I In ML and RL, the workflow for solving a problem generally consists of

two stages:

1. The programmers define the objective and the environment
that houses that objective.

2. Then an optimization algorithm tries to find the best possible
solution. In the case of RL, the objective and solution are
given by the reward function and policy.

I This approach comes with the risk that the objective’s definition may not
accurately capture the human’s intention. This could lead to an AI
system that satisfies the objective to behave in undesirable ways, even if
the algorithm that trained it was implemented flawlessly. Such a system
is typically called misaligned.

I Moreover, what happens when a misspecified reward function encourages
an RL agent to subvert its environment by prioritizing the acquisition of
reward signals above other measures of goal achievement?

I Agent behavior that scores highly according to the reward function but is
not aligned with the programmers’ intention is often referred to as
specification gaming.

Faulty Reward Functions

There are plenty of examples of specification gaming.
In one example, researchers at OpenAI trained an RL agent on the
game CoastRunners, which is about a motorboat race in a
simulated environment.

I The goal of the game - as understood by most humans - is to finish the
boat race quickly and (preferably) ahead of other players. CoastRunners
does not directly reward the players progression around the course, instead
the player earns higher scores by hitting targets laid out along the route.

I Programmers (naturally) assumed the score the player earned would
reflect the informal goal of finishing the race. However, it turned out that
the targets were laid out in such a way that the reinforcement learning
agent could gain a high score without having to finish the course. This
led to some unexpected behavior when an RL agent was trained to play
the game.

I In an example of misspecified reward, the game does not reward the
agent for its progression along the track, but for hitting targets laid out
along the track. This was exploited by the agent who found a strategy for
hitting targets without finishing the race.

Coastrunners

Short video on Coastrunners
The RL agent finds an isolated lagoon where it can turn in a large
circle and repeatedly knock over three targets, timing its movement so
as to always knock over the targets just as they repopulate. Despite
repeatedly catching on fire, crashing into other boats, and going the
wrong way on the track, our agent manages to achieve a higher score
using this strategy than is possible by completing the course in the
normal way. Our agent achieves a score on average 20 percent higher
than that achieved by human players.

While harmless and amusing in the context of a video game, this
kind of behavior points to a more general issue with reinforcement
learning: it is often difficult or infeasible to capture exactly what
we want an agent to do, and as a result we frequently end up
using imperfect but easily measured proxies. Often this works well,
but sometimes it leads to undesired or even dangerous actions. More
broadly it contravenes the basic engineering principle that systems
should be reliable and predictable.

https://www.youtube.com/watch?v=tlOIHko8ySg&t=1s&ab_channel=JackClark

Extending the RL framework to Reward Learning

I A broad class of methods that have gained a lot of attention recently
utilize the idea of a human in the loop.

I From “How learning reward functions can go wrong”:

The idea is simple: It is (presumably) easier to evaluate if observed
behaviour is correct than to unambiguously specify what correct be-
haviour looks like. Hence, it stands to reason to expect that an eval-
uation of agent behaviour by humans will be less error-prone than by
a reward function.

I However, in general, the possibility of agents manipulating the outcome
of their reward learning process is still a big problem.

The problem comes down to the simple fact that an agent has to
infer its reward function from an environment that it can manipulate.
As AI-safety researcher Stuart Armstrong put it, making the reward
function part of the learning process is a large change akin to moving
from “If you dont know what is right, look it up on this read-only
list” to “If you dont know what is right, look it up on this read-write
list.”

https://towardsdatascience.com/how-learning-reward-functions-can-go-wrong-6e794e42f4fc

Other technical issues

I data-hungry: it needs a ton of data or epochs (thousands of computing
hours in a simulator), often to learn what humans can usually grasp in a
few hours.

I opaque: in most cases, we can have only vague and high-level intuitions
about what an RL algorithm learns and how it works. In general, we of
course want the algorithms to be predictable and explainable; a neural net
or RL algo that just learns whatever it wants from scratch given just the
low level reward signal and maybe an environment model is low on the
explainability scale.

I issues with the reward function: for RL to do the right thing, one must
design a proper reward function. Such a function must capture exactly
what the designer want the reinforcement learning agent to solve – this is
hard and can come with a host of problems (hinted at above).

I brittleness: models generalize well to unseen inputs only after having
large amounts of data, or epochs in a simulated environment, and are
even then can still often be easily broken.

Deeper Dive into Ethical Issues with
Reinforcement Learning

Task Specification Issues in the real world!

“Imagine training a household robot to make you a cup of coffee. To use RL, you might design
a reward function that awards the agent for turning on the coffee machine, inserting the grounds,
pouring a cup, and bringing you the finished product. You might also include a small penalty
(negative reward) for each second that passes during the process, in order to encourage the swift
delivery of your coffee. This simple reward function is already problematic, due to the fact that your
household is a complicated place. Your home might include children, pets, fragile or sentimental
belongings, a system of organization, and an unspoken code of conduct and culture. However, none
of these were mentioned in the reward function above.

In this situation, to maximise its rewards, the household robot will prepare your coffee as fast
as possible, even if this means running over pets, breaking glasses, and generally destroying your
organised household along the way. On top of this, no matter how hard you try to write down all
the rules a robot should obey, the real world is sufficiently complex that you will inevitably leave
some out.

Task specification problems come in several flavours. The example of the household robot highlights
the negative side effects that can accrue as an agent works to maximise its rewards. To name
another, reward hacking can occur if the agent discovers a way to earn rewards that side-steps the
task its human designers were aiming to achieve. For example, the household robot might discover
that repeatedly switching the coffee maker off and back on earns much more reward than actually
delivering any coffee.” – The dangers of RL in the real world

https://faculty.ai/blog/the-dangers-of-reinforcement-learning-in-the-real-world/

Unsafe Exploration Risks

I Even with an accurately specified task, an agent’s process for learning
how to perform a given task can be dangerous.

I RL always involve trial-and-error learning: the agent takes random actions
until it learns which behaviors earn the most total reward. This is
generally problematic if learning is to take place in the real world, where
errors can be expensive or deadly!

I Since an RL agent must explore a wide variety of actions before learning
which behaviors to pursue and which to avoid, this can lead to issues
known by the name unsafe exploration.

I The freedom to explore without consequence is not always present. If I
want to build an autonomous vehicle using RL, how many thousands of
times will the car crash itself before it can make even the simplest
maneuvers? Sometimes – especially when training in simulated
environments is not enough – we simply can’t afford mistakes! In such
cases, RL is not the best option!

Unexpected Risks

Unexpected risks! Recall the unexpected policies executed by the
agents in the hide-and-seek world.

In discussing some of the surprising behaviors they observed, the
team at OpenAi said:

Building environments is not easy and it is quite often the
case that agents find a way to exploit the environment you
build or the physics engine in an unintended way.

Remember the Coastrunners example

where the reinforcement learning algorithm led the agent to get
stuck in meaningless loops that maximized a simple reward at the
expense of what we would deem a far more sensible greater goal
(finishing the race)?

This gets at a problem: namely, that reinforcement-learning algos
are notoriously very rigid. For instance, a reinforcement learning
model that plays one game at championship level wont be able to
play another game with similar mechanics. Related to this is the
potential for

Goal blindness: the tendency to maximize a reward in a
subroutine at the expense of more “important” goals.

A Glimpse into an abstract issue: Wireheading

Wireheading dilemma:
Ring and Orseau (2011) consider the possibility of an agent sabotaging its own
information source by placing itself in what they call a delusion box in which
the agent controls its own inputs, decreasing the amount of information that
its inputs give the agent about its environment.
These authors use it as an example of what can go wrong when one is not
careful about how an agent is defined, arguing that many simple agents would
put themselves in a delusion box. For instance, standard RL agents may distort
their own perception to appear to receive high reward, rather than optimizing
the objective in the external world that the reward signal was intended to
encourage. In other words, a reinforcement-learning agent has a utility function
that depends purely on its inputs, not on any other features or prior knowledge
of the external world, so if a reinforcement-learning agent had the opportunity
to replace its input with whatever input indicates maximum reward, it would do
so, regardless of the effect on the external environment.

	Intro
	Brief Background on AI/ML
	Deep Learning: Neural Networks
	Some Ethical Issues that arise with Deep Learning
	Opacity
	Difficulty Generalizing / Brittleness
	Bad Memory
	Quantifying Uncertainty

	Reinforcement Learning
	Limitations with RL

	Deeper Dive into Ethical Issues with Reinforcement Learning

